📄 mf_vandermonde.hlp
字号:
{smcl}
{* 28mar2005}{...}
{bf:help mata Vandermonde()}
{hline}
{* index Vandermonde()}{...}
{title:Title}
{p 4 4 2}
{bf:[M-5] Vandermonde() -- Vandermonde matrices}
{title:Syntax}
{p 8 12 2}
{it:numeric matrix}
{cmd:Vandermonde(}{it:numeric colvector x}{cmd:)}
{title:Description}
{p 4 4 2}
{cmd:Vandermonde(}{it:x}{cmd:)} returns the Vandermonde matrix
containing the geometric progression of {it:x} in each row
{c TLC}{c -} {c -}{c TRC}
{c |} 1 {it:x}_1 {it:x}_1^2 {it:x}_1^3 ... {it:x}_1^{it:n}-1 {c |}
{c |} 1 {it:x}_2 {it:x}_2^2 {it:x}_2^3 ... {it:x}_2^{it:n}-1 {c |}
{c |} . . . . . {c |}
{c |} . . . . . {c |}
{c |} . . . . . {c |}
{c |} 1 {it:x}_{it:n} {it:x}_{it:n}^2 {it:x}_{it:n}^3 ... {it:x}_{it:n}^{it:n}-1 {c |}
{c BLC}{c -} {c -}{c BRC}
{p 4 4 2}
where {it:n} = rows({it:x}).
Note that same authors use the transpose of the above matrix.
{title:Remarks}
{p 4 4 2}
Vandermonde matrices are useful in polynomial interpolation.
{title:Conformability}
{cmd:Vandermonde(}{it:x}{cmd:)}:
{it:x}: {it:n x} 1
{it:result}: {it:n x n}
{title:Diagnostics}
{p 4 4 2}
None.
{title:Source code}
{p 4 4 2}
{view vandermonde.mata, adopath asis:vandermonde.mata}
{title:Also see}
{p 4 13 2}
Manual: {hi:[M-5] Vandermonde()}
{p 4 13 2}
Online: help for
{bf:{help m4_matrix:[M-4] matrix}}
{p_end}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -