📄 mf_conj.hlp
字号:
{smcl}
{* 18mar2005}{...}
{cmd:help mata conj()}
{hline}
{* index conj()}{...}
{* index conjugate}{...}
{* index conjugate transpose}{...}
{* index adjoint matrix}{...}
{* index adjugate matrix}{...}
{* index Hermitian adjoin}{...}
{* index Hermitian transpose}{...}
{title:Title}
{p 4 4 2}
{bf:[M-5] conj() -- Complex conjugate}
{title:Syntax}
{p 8 12 2}
{it:numeric matrix}
{cmd:conj(}{it:numeric matrix Z}{cmd:)}
{title:Description}
{p 4 4 2}
{cmd:conj(}{it:Z}{cmd:)} returns the elementwise complex conjugate of
{it:Z}, i.e., {cmd:conj(}{it:a}+{it:b}i{cmd:)} = {it:a}-{it:b}i.
{cmd:conj()} may be used with real or complex matrices. If {it:Z} is
real, {it:Z} is returned unmodified.
{title:Remarks}
{p 4 4 2}
Note that, given {it:m} {it:x} {it:n} matrix {it:Z}, {cmd:conj(}{it:Z}{cmd:)}
returns an {it:m} {it:x} {it:n} matrix; it does not return the transpose. To
obtain the conjugate transpose matrix, also known as the adjoint matrix,
adjugate matrix, Hermitian adjoin, or Hermitian transpose, code
{it:Z}{cmd:'}
{p 4 4 2}
See {bf:{help m2_op_transpose:[M-2] op_transpose}}.
{p 4 4 2}
A matrix equal to its conjugate transpose is called Hermitian or self-adjoint
although, in this manual, we often use the term symmetric.
{title:Conformability}
{cmd:conj(}{it:Z}{cmd:)}:
{it:Z}: {it:r x c}
{it:result}: {it:r x c}
{title:Diagnostics}
{p 4 4 2}
{cmd:conj(}{it:Z}{cmd:)} returns a real matrix if {it:Z} is real and a complex
matrix if {it:Z} is complex.
{p 4 4 2}
{cmd:conj(}{it:Z}{cmd:)}, if {it:Z} is real,
returns {it:Z} itself and not a copy. This makes {cmd:conj()} execute
instantly when applied to real matrices.
{title:Source code}
{p 4 4 2}
Function is built-in.
{title:Also see}
{p 4 13 2}
Manual: {hi:[M-5] conj()}
{p 4 13 2}
Online: help for
{bf:{help mf__transpose:[M-5] _transpose}};
{bf:{help m4_scalar:[M-4] scalar}}
{p_end}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -