📄 mf_hilbert.hlp
字号:
{smcl}
{* 28mar2005}{...}
{bf:help mata Hilbert()}
{hline}
{* index Hilbert()}{...}
{title:Title}
{p 4 4 2}
{bf:[M-5] Hilbert() -- Hilbert matrices}
{title:Syntax}
{p 8 12 2}
{it:real matrix}
{cmd:Hilbert(}{it:real scalar n}{cmd:)}
{p 8 12 2}
{it:real matrix}
{cmd:invHilbert(}{it:real scalar n}{cmd:)}
{title:Description}
{p 4 4 2}
{cmd:Hilbert(}{it:n}{cmd:)}
returns the {it:n x n} Hilbert matrix, defined as
matrix {it:H} with elements {it:H}[{it:i},{it:j}]=1/({it:i}+{it:j}-1).
{p 4 4 2}
{cmd:invHilbert(}{it:n}{cmd:)}
returns the inverse of the {it:n x N} Hilbert matrix, defined as
the matrix with elements
(-1)^({it:i}+{it:j})*({it:i}+{it:j}-1)*comb({it:n}+{it:i}-1,
{it:n}-{it:j})*comb({it:n}+{it:j}-1,
{it:n}-{it:i})*comb({it:i}+{it:j}-2, {it:i}-1)^2.
{title:Remarks}
{p 4 4 2}
{cmd:Hilbert(}{it:n}{cmd:)} and
{cmd:invHilbert(}{it:n}{cmd:)}
are used in testing Mata.
Hilbert matrices are notoriously ill conditioned.
The determinants of the first five Hilbert matrices are
1, 1/12, 1/2,160, 1/6,048,000, and 1/266,716,800,000.
{title:Conformability}
{cmd:Hilbert(}{it:n}{cmd:)}, {cmd:invHilbert(}{it:n}{cmd:)}:
{it:n}: 1 {it:x} 1
{it:result}: trunc({it:n}) {it:x} trunc({it:n})
{title:Diagnostics}
{p 4 4 2}
None.
{title:Source code}
{p 4 4 2}
{view hilbert.mata, adopath asis:hilbert.mata},
{view invhilbert.mata, adopath asis:invhilbert.mata}
{title:Also see}
{p 4 13 2}
Manual: {hi:[M-5] Hilbert()}
{p 4 13 2}
Online: help for
{bf:{help m4_matrix:[M-4] matrix}}
{p_end}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -