📄 mf_det.hlp
字号:
{smcl}
{* 28mar2005}{...}
{bf:help mata det()}
{hline}
{* index determinant of matrix}{...}
{* index det()}{...}
{* index dettriangular()}{...}
{title:Title}
{p 4 4 2}
{bf:[M-5] det() -- Determinant of matrix}
{title:Syntax}
{p 8 12 2}
{it:numeric scalar}
{cmd:det(}{it:numeric matrix A}{cmd:)}
{p 8 12 2}
{it:numeric scalar}
{cmd:dettriangular(}{it:numeric matrix A}{cmd:)}
{title:Description}
{p 4 4 2}
{cmd:det(}{it:A}{cmd:)} returns the determinant of {it:A}.
{p 4 4 2}
{cmd:dettriangular(}{it:A}{cmd:)} returns the determinant of {it:A}
treating {it:A}, as if it were triangular (even if it is not).
{title:Remarks}
{p 4 4 2}
Calculation of the determinant is made by obtaining the LU decomposition of
{it:A} and then calculating the determinant of {it:U}:
det({it:A}) = det({it:PLU})
= det({it:P})*det({it:L})*det({it:U})
= (+/-1)*1*det({it:U})
= +/-det({it:U})
{p 4 4 2}
Since {it:U} is (upper) triangular, det({it:U}) is simply the product of its
diagonal elements.
See {bf:{help mf_lud:[M-5] lud()}}.
{title:Conformability}
{cmd:det(}{it:A}{cmd:)}, {cmd:dettriangular(}{it:A}{cmd:)}:
{it:A}: {it:n x n}
{it:result}: 1 {it:x} 1
{title:Diagnostics}
{p 4 4 2}
{cmd:det(}{it:A}{cmd:)} and
{cmd:dettriangular(}{it:A}{cmd:)}
return 1 if {it:A} is 0 {it:x} 0.
{p 4 4 2}
{cmd:det(}{it:A}{cmd:)} aborts with error if {it:A} is not square
and returns missing if {it:A} contains missing values.
{p 4 4 2}
{cmd:dettriangular(}{it:A}{cmd:)} aborts with error if {it:A} is not
square and returns missing if any element on the diagonal of {it:A}
is missing.
{p 4 4 2}
Both
{cmd:det(}{it:A}{cmd:)} and
{cmd:dettriangular(}{it:A}{cmd:)}
will return missing value if the determinant exceeds 8.99e+307.
{title:Source code}
{p 4 4 2}
{view det.mata, adopath asis:det.mata},
{view dettriangular.mata, adopath asis:dettriangular.mata}
{title:Also see}
{p 4 13 2}
Manual: {hi:[M-5] det()}
{p 4 13 2}
Online: help for
{bf:{help mf_lud:[M-5] lud()}};
{bf:{help m4_matrix:[M-4] matrix}}
{p_end}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -