📄 mf_cond.hlp
字号:
{smcl}
{* 31mar2005}{...}
{cmd:help mata cond()}
{hline}
{* index cond()}{...}
{* index condition number}{...}
{cmd:Title}
{p 4 8 2}
{bf:[M-5] cond() -- Condition number}
{title:Syntax}
{p 8 8 2}
{it:real scalar}{bind: }
{cmd:cond(}{it:numeric matrix A}{cmd:)}
{p 8 8 2}
{it:real scalar}{bind: }
{cmd:cond(}{it:numeric matrix A}, {it:real scalar p}{cmd:)}
{title:Description}
{p 4 4 2}
{cmd:cond(}{it:A}{cmd:)} returns {cmd:cond(}{it:A}, 2{cmd:)}.
{p 4 4 2}
{cmd:cond(}{it:A}, {it:p}{cmd:)} returns the
value of the condition number of {it:A} for the specified norm {it:p},
where {it:p} may be 0, 1, 2, or {cmd:.} (missing).
{title:Remarks}
{p 4 4 2}
The condition number of a matrix A is
{* TeX in math mode}{...}
{it:cond} = norm({it:A}, {it:p}) * norm({it:A}^(-1), {it:p})
{p 4 4 2}
These functions return missing when A is singular.
{p 4 4 2}
Values near 1 indicate that the matrix is well conditioned, and large values
indicate ill conditioning.
{title:Conformability}
{cmd:cond(}{it:A}{cmd:)}:
{it:A}: {it:r x c}
{it:result}: 1 {it:x} 1
{cmd:cond(}{it:A}, {it:p}{cmd:)}:
{it:A}: {it:r x c}
{it:p}: 1 {it:x} 1
{it:result}: 1 {it:x} 1
{title:Diagnostics}
{p 4 4 2}
{cmd:cond(}{it:A}{cmd:,} {it:p}{cmd:)} aborts with error if
{it:p} is not 0, 1, 2, or {cmd:.} (missing).
{p 4 4 2}
{cmd:cond(}{it:A}{cmd:)} and
{cmd:cond(}{it:A}{cmd:,} {it:p}{cmd:)}
return missing when {it:A} is singular or if {it:A} contains missing values.
{p 4 4 2}
{cmd:cond(}{it:A}{cmd:)} and
{cmd:cond(}{it:A}{cmd:,} {it:p}{cmd:)}
return 1 when {it:A} is void.
{p 4 4 2}
{cmd:cond(}{it:A}{cmd:)} and
{cmd:cond(}{it:A}{cmd:, 2)} return missing if the SVD algorithm fails
to converge, which is highly unlikely; see {bf:{help mf_svd:[M-5] svd()}}.
{title:Source code}
{p 4 4 2}
{view cond.mata, adopath asis:cond.mata}
{title:Also see}
{p 4 13 2}
Manual: {hi:[M-5] cond()}
{p 4 13 2}
Online: help for
{bf:{help mf_norm:[M-5] norm()}};
{bf:{help m4_matrix:[M-4] matrix}}
{p_end}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -