📄 svypoisson.ado
字号:
*! version 3.0.9 20dec2004
program define svypoisson, sortpreserve
version 8, missing
if _caller() < 8 {
svypois_7 `0'
exit
}
if replay() {
if "`e(cmd)'" != "svypoisson" {
error 301
}
syntax [, IRr * ]
svyopts invalid diopts , `options'
local diopts `diopts' `irr'
if "`invalid'" != "" {
di as err "`invalid' : invalid options for replay"
exit 198
}
Display, `diopts'
exit
}
else Estimate `0'
end
program define Estimate, eclass
/* Parse */
syntax varlist(numeric) /*
*/ [pw iw] /* see _svy_newrule.ado
*/ [if] [in] /*
*/ [, /*
*/ noCONStant /* my options
*/ LOg /*
*/ Exposure(varname numeric) /*
*/ IRr /*
*/ First /* ignored
*/ FROM(string) /*
*/ OFFset(varname numeric) /*
*/ SCore(string) /*
*/ svy /* ignored
*/ STRata(passthru) /* see _svy_newrule.ado
*/ PSU(passthru) /* see _svy_newrule.ado
*/ FPC(passthru) /* see _svy_newrule.ado
*/ * /* svy/ml/display options
*/ ]
_svy_newrule , `weight' `strata' `psu' `fpc'
mlopts mlopts rest, `options' `eform'
svyopts svymlopts diopts , `rest'
local diopts `diopts' `irr'
local subcond `s(subpop)'
/* Check estimation syntax. */
if `"`log'"' == "" {
local log nolog
local quietly quietly
}
if `"`score'"'!="" {
confirm new variable `score'
local nword : word count `score'
if `nword' > 1 {
di as err "score() must contain the name of only " /*
*/ "one new variable"
exit 198
}
tempvar scvar
local scopt score(`scvar')
}
if "`offset'"!="" & "`exposure'"!="" {
di as err "only one of offset() or exposure() can be specified"
exit 198
}
if "`constant'"!="" {
local nvar : word count `varlist'
if `nvar' == 1 {
di as err "independent variables required with " /*
*/ "noconstant option"
exit 102
}
}
/* Mark sample except for offset/exposure. */
marksample touse, zeroweight
/* Process offset/exposure. */
if "`exposure'"!="" {
capture assert `exposure' > 0 if `touse'
if _rc {
di as err "exposure() must be greater than zero"
exit 459
}
tempvar offset
qui gen double `offset' = ln(`exposure')
local offvar "ln(`exposure')"
}
if "`offset'"!="" {
markout `touse' `offset'
local offopt "offset(`offset')"
if "`offvar'"=="" {
local offvar "`offset'"
}
}
/* Count obs and check for negative values of `y'. */
gettoken y xvars : varlist
summarize `y' if `touse', meanonly
if r(N) == 0 {
error 2000
}
if r(N) == 1 {
error 2001
}
if r(min) < 0 {
di as err "`y' must be greater than or equal to zero"
exit 459
}
if r(min) == r(max) & r(min) == 0 {
di as err "`y' is zero for all observations"
exit 498
}
tempname mean nobs
scalar `mean' = r(mean)
scalar `nobs' = r(N) /* #obs for checking #missings in calculations */
/* Check whether `y' is integer-valued. */
if "`display'"=="" {
capture assert `y' == int(`y') if `touse'
if _rc {
di as txt "note: you are responsible for " /*
*/ "interpretation of non-count dep. variable"
}
}
/* Remove collinearity. */
quietly svyset
local wtype `r(wtype)'
local wexp "`r(wexp)'"
_rmcoll `xvars' [`wtype'`wexp'] if `touse', `constant'
local xvars `r(varlist)'
/* Get initial values. */
if "`from'"=="" {
Ipois `y' `xvars' [`wtype'`wexp'] if `touse', /*
*/ n(`nobs') mean(`mean') `constant' `offopt'
if "`r(b0)'"!="" {
tempname from
mat `from' = r(b0)
}
}
if "`from'"!="" {
local initopt `"init(`from') search(off)"'
}
else local initopt "search(on) maxfeas(50)"
/* Fit miss-specified model. */
local 0 , `diopts' `svymlopts'
syntax [, MEFF MEFT * ]
if "`meff'`meft'" != "" {
`quietly' di _n as txt "Computing misspecified " ///
as res "poisson" ///
as txt " model for meff/meft computation:"
if "`subcond'" != "" {
local mysubtouse (`touse' & `subcond' != 0)
}
else local mysubtouse `touse'
eret clear
`quietly' poisson `y' `xvars' if `mysubtouse', /*
*/ `constant' `mlopts' `offopt'
tempname Vmeff
mat `Vmeff' = e(V)
}
/* Fit full model. */
ml model d2 poiss_lf /*
*/ (`y': `y' = `xvars', `constant' `offopt') /*
*/ if `touse', /*
*/ collinear /*
*/ missing /*
*/ max /*
*/ nooutput /*
*/ nopreserve /*
*/ `mlopts' /*
*/ svy /*
*/ `svymlopts' /*
*/ `scopt' /*
*/ `log' /*
*/ `initopt' /*
*/ title("Survey Poisson regression") /*
*/ crittype("log pseudolikelihood") /*
*/
if "`score'" != "" {
label var `scvar' "Score index from poisson"
rename `scvar' `score'
eret local scorevars `score'
}
else eret local scorevars
eret local k_eq
eret local offset "`offvar'"
eret local offset1 /* erase; set by -ml- */
eret local predict "poisso_p"
if "`Vmeff'" != "" {
_svy_mkmeff `Vmeff'
}
eret local cmd "svypoisson"
/* Double save. */
global S_E_nobs = e(N)
global S_E_nstr = e(N_strata)
global S_E_npsu = e(N_psu)
global S_E_npop = e(N_pop)
global S_E_wgt `e(wtype)'
global S_E_exp "`e(wexp)'"
global S_E_str `e(strata)'
global S_E_psu `e(psu)'
global S_E_depv `e(depvar)'
global S_E_f = e(F)
global S_E_mdf = e(df_m)
global S_E_cmd `e(cmd)'
Display, `diopts'
end
program LikePois, rclass
gettoken y 0 : 0
gettoken xb 0 : 0
syntax [fw aw pw iw] [if] , Nobs(string)
if "`wtype'"!="" {
if "`wtype'"=="fweight" {
local wt `"[fw`wexp']"'
}
else local wt `"[aw`wexp']"'
}
tempvar lnf
qui gen double `lnf' = `y'*(`xb')-exp(`xb')-lngamma(`y'+1) `if'
summarize `lnf' `wt' `if', meanonly
if r(N) != `nobs' {
exit
}
if "`wtype'"=="aweight" {
ret scalar lnf = r(N)*r(mean)
/* weights not normalized in r(sum) */
}
else ret scalar lnf = r(sum)
end
program SolveC, rclass /* note: similar code is found in nbreg.ado */
gettoken y 0 : 0
gettoken xb 0 : 0
syntax [fw aw pw iw] [if] , Nobs(string) Mean(string)
if "`weight'"=="pweight" | "`weight'"=="iweight" {
local weight "aweight"
}
capture confirm variable `xb'
if _rc {
tempvar xbnew
qui gen double `xbnew' = (`xb') `if'
local xb `xbnew'
}
summarize `xb' [`weight'`exp'] `if', meanonly
if r(N) != `nobs' {
exit
}
if r(max) - r(min) > 2*709 { /* unavoidable exp() over/underflow */
exit /* r(_cons) is missing */
}
if r(max) > 709 | r(min) < -709 {
tempname shift
if r(max) > 709 {
scalar `shift' = 709 - r(max)
}
else scalar `shift' = -709 - r(min)
local shift "+`shift'"
}
tempvar expoff
qui gen double `expoff' = exp(`xb'`shift') `if'
summarize `expoff' [`weight'`exp'], meanonly
if r(N) != `nobs' { /* should not happen */
exit
}
return scalar _cons = ln(`mean')-ln(r(mean))`shift'
end
program Ipois, rclass
syntax varlist [fw aw pw iw/] [if] , Nobs(string) Mean(string) /*
*/ [ noCONstant OFFset(string) ]
gettoken y xvars : varlist
tempvar xb z
tempname b1 b2 lnf1
if "`weight'"!="" {
local awt `"[aw=`exp']"'
local wt `"(`exp')*"'
local exp `"=`exp'"'
}
quietly {
/* Initial values: b1 = b/mean, where b are coefficients
from reg `y' `xvars' and mean is mean of `y'.
*/
if "`offset'"!="" {
tempvar ynew
gen double `ynew' = `y' - `offset'*`mean' `if'
local poff "+`offset'"
}
else local ynew `y'
reg `ynew' `xvars' `awt' `if', `constant'
mat `b1' = (1/`mean')*e(b)
mat score double `xb' = `b1' `if'
LikePois `y' `xb'`poff' [`weight'`exp'] `if', n(`nobs')
scalar `lnf1' = r(lnf)
}
/* Solve for _cons (change) for poisson likelihood given b1. */
if "`constant'"=="" {
SolveC `y' `xb'`poff' [`weight'`exp'] `if', /*
*/ n(`nobs') mean(`mean')
tempname c
scalar `c' = r(_cons)
if `c'<. {
local c "+`c'"
}
else local c /* erase macro */
LikePois `y' `xb'`poff'`c' [`weight'`exp'] `if', n(`nobs')
tempname lnf1c
scalar `lnf1c' = r(lnf)
}
else local lnf1c .
/* Take iteratively reweighted least-squares step to get b2. */
capture {
gen double `z' = `y'*exp(-(`xb'`poff'`c'))-1 /*
*/ +`xb'`c' `if'
reg `z' `xvars' [aw=`wt'exp(`xb'`poff'`c')] `if', /*
*/ `constant'
mat `b2' = e(b)
drop `xb'
_predict double `xb' `if'
LikePois `y' `xb'`poff' [`weight'`exp'] `if', n(`nobs')
tempname lnf2
scalar `lnf2' = r(lnf)
}
if _rc {
local lnf2 .
}
if `lnf1'>=. & `lnf1c'>=. & `lnf2'>=. {
exit
}
if `lnf2'<.&(`lnf2'>`lnf1'|`lnf1'>=.)&(`lnf2'>`lnf1c'|`lnf1c'>=.) {
ret matrix b0 `b2' /* `lnf2' best */
exit
}
if `lnf1'<.&(`lnf1'>`lnf1c'|`lnf1c'>=.)&(`lnf1'>`lnf2'|`lnf2'>=.) {
ret matrix b0 `b1' /* `lnf1' best */
exit
}
local dim = colsof(`b1')
mat `b1'[1,`dim'] = `b1'[1,`dim']`c'
ret matrix b0 `b1' /* `lnf1c' best */
end
program define Display
syntax [, Level(cilevel) * ]
ml display , level(`level') `options'
end
exit
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -