📄 stata12.key
字号:
.e STB-30 @net:stb 30 dm41!dm41@
.c stb
.t Online documentation for _result() contents
.a J. R. Gleason
.o @_result@ if installed
.k prog-ramming prog-rams display sav-ed result-s debug disp_res disp_s disp
.k s_-# _res-ult data-sets set-s manage-ment _res5dcn _res5dds
.k _res5din _res5s1w _res5scr
.k _res5sfa _res5sqr _res5srg _res5srr _res5sta _res5sts _res5sum _res6avr
.k _res6mac _res6mlo _res7max _res_all _res_idx
.z
.x
3/96 pp.3--5; STB Reprints Vol 5, pp.49--52
the contents of Saved Results is available online;
Saved Results were changed in Stata 6
.e STB-30 @net:stb 30 ip8.1!ip8.1@
.c stb
.t An even more enhanced for command
.a P. Royston
.o @for3@ if installed
.k util-ity repeat command-s var-iables edit correct modify for-3
.z
.x
3/96 pp.5--6; STB Reprints Vol 5, pp.65--66
incorporated into improved @for@ command in Stata 5.0
.e STB-30 @net:stb 30 sg50!sg50@
.c stb
.t Graphical assessment of linear trend
.a J. M. Garrett
.o @lintrend@ if installed
.k stat-istics trend linear dicho-tomous lintrend
.k plot-s plot-ting graph-s graph-ing pred-ictions pred-icted value-s graph-ics
.k model-s reg-ressions logis-tic logit log odds bina-ry outcome-s
.x
3/96 pp.9-15; STB Reprints Vol 5, pp.152--160
graphically examines the relationship between the log odds
of a binary outcome by categories of an ordinal or interval
independent variable
.e STB-30 @net:stb 30 sg49!sg49@
.c stb
.t An improved command for paired t tests
.a J. R. Gleason
.o @rmttest@ if installed
.k equal-ity test-s test-ing mean-s ave-rages distrib-utions rmttest
.k hyp-othesis hyp-otheses stud-entst t-tests match-ed pair-s stat-istics
.k pair-ed repeated meas-urements
.x
3/96 pp.6--9; STB Reprints Vol 5, pp.147--152
performs repeated measures (or matched-pairs) t test when
pairs y1 and y2 are stored as values of a single response
variable y
.e STB-30 @net:stb 30 snp10!snp10@
.c stb
.t Nonparametric regression: Kernel, WARP and K-NN estimators
.a Salgado-Ugarte, Shimizu, Taniuchi
.k kern-el dens-ity est-imators est-imation stat-istics est-imates
.k smooth-ers smooth-ing hist-ograms nonpar-ametric non param-etric
.k warp-ing univar-iate distrib-utions reg-ressions kernreg warpreg gwarpreg
.k band-width width bands bin-s interv-als knnreg
.o @kernreg@, @knnreg@ if installed
.x
3/96 pp.15-30; STB Reprints Vol 5, pp.197--218
performs kernel regression
.e STB-29 crc43
.c stb
.t Test nonlinear hypotheses after model estimation
.k equal-ity test-s coef-ficients model-s est-imation hyp-othesis hyp-otheses
.k chi-squared sq-uared chi-2 2 f-statistics stat-istics testparm
.k reg-ressions ml-e max-imum like-lihood contrast-s beta param-eters
.k cov-ariances constrain-ts est-imates nonlin-ear non linear wald test-ing
.o @testnl@
.z
.x
1/96 pp.2--4; STB Reprints Vol 5, pp.15--18
incorporated into Stata 5.0
.e STB-29 @net:stb 29 dm40!dm40@
.c stb
.t Converting string variables to numeric variables
.a R. M. Farmer
.o @conv2num@ if installed
.k data-sets set-s manage-ment conv2num var-iables str-ings num-eric convert real
.z
.x
1/96 pp.8-9; STB Reprints Vol 5, pp.48--49
@destring@ available in Stata 7.0
.e STB-29 dm39
.c stb
.t Using .hlp files to document data analysis
.a M. Hills
.k data-sets set-s manage-ment docu-ment help anal-ysis descrip-tion
.x
1/96 p.8; STB Reprints Vol 5, pp.47--48 (no commands)
description of how one might use ^.hlp^ files to document
data analysis
.e STB-29 @net:stb 29 dm38!dm38@
.c stb
.t A more automated merge procedure
.a R. M. Farmer
.o @mergein@ if installed
.k comb-ine data-sets set-s join merge var-iables add mergein manage-ment
.z
.x
1/96 pp.6--7; STB Reprints Vol 5, pp.45--47
automates merge process by guaranteeing that datasets are sorted
and that neither contains ^_merge^ variable; also permits matching
variables to have different names in the datasets
.e STB-29 @net:stb 29 dm37!dm37@
.c stb
.t Extended merge capabilities
.a J. Faust
.o @xmerge@ if installed
.k comb-ine data-sets set-s join merge var-iables add xmerge-d dict-ionary
.k manage-ment
.x
1/96 pp.5--6; STB Reprints Vol 5, pp.43--45
merge two or more datasets or two or more dictionary files
.e STB-29 @net:stb 29 dm27.1!dm27.1@
.c stb
.t Correction to improved collapse
.a W. Gould
.o @coll2@ if installed
.k aggregate stat-istics mean-s med-ians stand-ard dev-iations std sum-s
.k nonmiss-ing obs-ervations max-imums max-ima min-imums min-ima percent-iles
.k interquart-ile range set-s data-sets ave-rages centile-s creat-e make
.k count-s quantile-s non miss-ing freq-uencies freq-uency iqr quartile-s
.k func-tions contain-ing variance-s proc summ-ary collapse weight-s coll2
.k manage-ment total-s
.z
.x
1/96 p.4; STB Reprints Vol 5, p.19
improvements incorporated into improved @collapse@ command
in Stata 5.0
.e STB-29 @net:stb 29 gr19!gr19@
.c stb
.t Misleading or confusing boxplots
.a J. C. Nash
.k graph-ics graph-s plot-s box-plots miss-ing value-s scaled unscaled data
.x
1/96 pp.14--17; STB Reprints Vol 5, pp.60--64
discussion of how scaling of data and/or missing values may
lead to misleading boxplots
.e STB-29 @net:stb 29 gr18!gr18@
.c stb
.t Graphing high-dimensional data using parallel coordinates
.a J. R. Gleason
.o @parcoord@ if installed
.k graph-ics graph-s parcoord coor-dinates paral-lel plot-s high dimen-sional
.k parc multiv-ariate data
.x
1/96 pp.10--14; STB Reprints Vol 5, pp.53--60
produce ParC plots (parallel coordinate plots), a method for
representing multivariate data
.e STB-29 @net:stb 29 ip12!ip12@
.c stb
.t Parsing tokens in Stata
.a S. Becketti
.o @xparse@, @readtok@ if installed
.k prog-ramming prog-rams pars-e macro-s arg-uments user input-ting input-ing
.k xparse readtok
.z
.x
1/96 pp.19--21; STB Reprints Vol 5, pp.73--76
programs that extend Stata's low-level parsing capabilities
.e STB-29 @net:stb 29 ip11!ip11@
.c stb
.t A tool for manipulating s_# objects
.a J. R. Gleason
.o @s_no@ if installed
.k s_-no prog-ramming prog-rams util-ity s_-#
.z
.x
1/96 pp.17--19; STB Reprints Vol 5, pp.71--73
programming tool; display or erase macros, scalars, or
matrices with names of the form S_#
.e STB-29 @net:stb 29 sg48!sg48@
.c stb
.t Predictions in the original metric for log-transformed models
.a R. Goldstein
.o @predlog@ if installed
.k predlog stat-istics pred-ictions transfo-rmations transfo-rmed log
.k retransfo-rmations smear-ing est-imates duan exp-onentiation
.x
1/96 pp.27--29; STB Reprints Vol 5, pp.145--147
calculates three different retransformations, which allow
obtaining predictions in the original metric
.e STB-29 @net:stb 29 sg47!sg47@
.c stb
.t A plot and a test for the chi-squared distribution
.a P. Royston
.o @qchi@, @a2@ if installed
.k qqplot qchi a2 anderson-darling darling goodness fit prob-ability plot-s
.k norm-ality chi-squared square-d q-q quantile-s distrib-utions stat-istics
.k unif-orm
.x
1/96 pp.26--27; STB Reprints Vol 5, pp.142--144
produces a q-q plot for the chi-squared distribution; another
command performs Anderson-Darling goodness-of-fit test for
normal, uniform, and chi-squared distributions;
incorporated into Stata 5
.e STB-29 @net:stb 29 sg46!sg46@
.c stb
.t Huber correction for two-stage least squares estimates
.a M. Over, D. Jolliffe, A. Foster
.o @hreg2sls@ if installed
.k huber reg-ressions prob-ability weight-ing weight-s white-s meth-od
.k stand-ard err-ors std est-imates clus-tering weight-ed hreg hreg2sls iv
.k instrum-ental var-iables least sq-uares sq-uared two-stage stage 2sls tsls
.z
.x
1/96 pp.24--25; STB Reprints Vol 5, pp.140--142
predecessor of robust estimator of variance introduced
in Stata 5.0; see help @regress@
.e STB-29 @net:stb 29 sg29.1!sg29.1@
.c stb
.t Tabulation of observed/expected ratios & conf. intervals
.a P. Sasieni
.o @smrby@ if installed
.k mortality smr stand-ardized stand-ardised tab-ulations tab-ulate ratio-s
.k conf-idence interv-als stat-istics smrby
.x
1/96 pp.21--24; STB Reprints Vol 5, pp.87--90
improved version of ^smr^
.e STB-29 @net:stb 29 snp9!snp9@
.c stb
.t Kornbrot's rank difference test
.a R. Goldstein
.o @kornbrot@ if installed
.k equal-ity distrib-utions pop-ulations hyp-othesis hyp-otheses
.k match-ed pair-s test-s test-ing signrank data
.k nonpar-ametric rank-sums sum-s order non param-etric kornbrot ordinal
.k wilcox-on sign-edranks sign-ed two samp-les stat-istics
.x
1/96 pp.29--31; STB Reprints Vol 5, pp.195--197
alternative to @signrank@ that is useful when one has ordinal data
.e STB-28 crc42
.c stb
.t Improvements to the heckman command
.k linear reg-ressions est-imation heckman selec-tion model-s mill-s ratio-s
.k multiv-ariate partici-pation stat-istics est-imates ml-e bias
.k max-imum like-lihood
.o @heckman@
.z
.x
11/95 pp.6--7; STB Reprints Vol 5, pp.13--15
incorporated into Stata 5.0
.e STB-28 crc41
.c stb
.t New lfit, lroc, and lstat commands
.k lfit lroc lstat lsens stat-istics logis-tic reg-ressions
.k dicho-tomous bina-ry outcome-s model-s lpredict
.k est-imation ml-e max-imum like-lihood step-wise logit
.o @lfit@
.z
.x
11/95 pp.2--6; STB Reprints Vol 5, pp.8--13
incorporated into Stata 5.0
.e STB-28 @net:stb 28 dm36!dm36@
.c stb
.t Comparing two Stata datasets
.a J. R. Gleason
.o @compdta@ if installed
.k compdta compar-e file-s two compar-isons data-sets set-s manage-ment
.z
.x
11/95 pp.10--13; STB Reprints Vol 5, pp.39--43
compare the varlist from the dataset in memory with like-named
variables in the Stata-format dataset on disk; alternative to
@cf@ command
.e STB-28 @net:stb 28 dm35!dm35@
.c stb
.t A utility for surveying Stata-format datasets
.a T. J. Schmidt
.o @dtainfo@ if installed
.k dtainfo display content-s data-sets set-s var-iables descrip-tion
.k describe miss-ing value-s stor-age type-s manage-ment
.z
.x
11/95 pp.7--9; STB Reprints Vol 5, pp.36--39
utility program that reports information about the contents of
Stata-format datasets; program not available for Macintosh
.e STB-28 @net:stb 28 ip10!ip10@
.c stb
.t Finding an observation number
.a S. Becketti
.o @findobs@ if installed
.k findobs prog-ramming prog-rams util-ity
.x
11/95 pp.13--14; STB Reprints Vol 5, pp.70--71
display the observation number of the i-th observation that
satisfies specified conditions; useful to programmers
.e STB-28 sbe12
.c stb
.t Using lfit and lroc to evaluate mortality prediction models
.a J. M. Tilford, P. K. Roberson, and D. H. Fiser
.k lfit lroc stat-istics mortality roc logis-tic logit pred-ictions
.k calibra-tion discrimination prism
.x
11/95 pp.14--18; STB Reprints Vol 5, pp.77--81 (no commands)
discussion of how the new @lfit@ and @lroc@ commands (see crc41)
can be used to evaluate mortality prediction models
.e STB-28 @net:stb 28 sg45!sg45@
.c stb
.t Maximum-likelihood ridge regression
.a R. L. Obenchain
.o @rxridge@, @rxrisk@, @rxrcrlq@, @rxrsimu@ if installed
.k rxrcrlq rxridge rxrmaxl rxrrisk rxrsimu stat-istics max-imum like-lihood
.k reg-ressions est-imation ridge rxrmkdta
.z
.x
11/95 pp.22--35; STB Reprints Vol 5, pp.121--140
overview of ridge regression concepts along with programs
to monitor the effects of shrinkage
.e STB-28 @net:stb 28 sg44!sg44@
.c stb
.t Random number generators
.a J. Hilbe and W. Linde-Zwirble
.o @rnd@ if installed
.k rnd rand-om num-bers gen-erate gen-erators unif-orm norm-al student-s t
.k chi-squared square-d f poisson binom-ial gamma exp-onential weibull beta
.k rndbb rndbin rndbinx rndchi rndexp rndf rndgam rndgamx rndivg rndivgx
.k rndlgn rndpoi rndpoix rndt rndwei log-normal
.x
11/95 pp.20--21; STB Reprints Vol 5, pp.118--121
programs to implement random number generators that allows user
to generate synthetic data from a variety of distributions
.e STB-28 @net:stb 28 sg43!sg43@
.c stb
.t Modified t statistics
.a R. Goldstein
.o @modt@, @obrien@ if installed
.k modt modti obrien stat-istics equal-ity test-s test-ing mean-s ave-rages
.k distrib-utions hyp-othesis hyp-otheses immed-iate stud-entst t-tests
.k match-ed pair-s pair-ed unpair-ed stat-istics
.x
11/95 pp.18--19; STB Reprints Vol 5, pp.117--118
alternative commands to @ttest@ and @ranksum@ for use when data is
skewed, when the groups have unequal variance, or when there is
heterogeneity of effect
.e STB-27 @net:stb 27 ip9!ip9@
.c stb
.t Repeat Stata command by variable(s)
.a P. Royston
.k lang-uage synt-ax repeat command-s by group-s each byvar
.o @byvar@ if installed
.z
.x
9/95 pp.3--5; STB Reprints Vol 5, pp.67--69
ado commands byable in Stata 7.0
.e STB-27 @net:stb 27 snp6.2!snp6.2@
.c stb
.t Rules for bandwidth selection in univariate density estimation
.a Salgado-Ugarte, Shimizu, Taniuchi
.k univar-iate band-width width bands bin-s interv-als
.k hist-ograms kern-el bandw l2cvwarp bcvwarp kerneld warpden-s
.k kern-el dens-ity est-imators est-imation stat-istics est-imates
.k smooth-ers smooth-ing hist-ograms nonpar-ametric non param-etric
.k warp-ing univar-iate distrib-utions wardens
.o @bandw@, @warpden@ if installed
.z
.x
9/95 pp.5--19; STB Reprints Vol 5, pp.172--190
surveys a variety of methods for selecting bandwidth for
univariate density estimation; programs presented for
determining reference values for bandwidth
.e STB-27 @net:stb 27 ssa8!ssa8@
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -