⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svyheckman.ado

📁 是一个经济学管理应用软件 很难找的 但是经济学学生又必须用到
💻 ADO
📖 第 1 页 / 共 2 页
字号:

		`first' probit `seldep' `selind' `wgt' /*
			*/ if `touse', asis `selnc' `soffopt'
		`do2' matrix `Vprb' = get(VCE)
		predict double `pxb', xb, if `touse'
		mat `bprb' = get(_b)
		gen double `mills' = normd(`pxb') / normprob(`pxb') 
		return scalar prbll = e(ll)

					/* Regression strictly to test indep */
		if "`offset'" != ""  {
			local origdep `depvar'
			tempname depvar
			gen double `depvar' = `origdep' - `offset'
		}
		if "`wtype'" == "aweight" {
			tempvar wt
			gen double `wt' `wtexp'
			sum `wt' if `touse', meanonly
			replace `wt' = `wt' * r(N) / r(sum)
			sum `wt'  if `touse' & `seldep'
			scalar `wtobs' = r(sum)         
			                /* required, e(N) is rounded */
			regress `depvar' `varlist' [iweight=`wt'], /*
				*/ `constant', /*
				*/ if `touse' & `seldep'
		}
		else {
			regress `depvar' `varlist' `wgt', /*
			*/ `constant', if `touse' & `seldep' 
			scalar `wtobs' = e(N)
		}
		return scalar regll = -0.5 * `wtobs' * /*
			*/ ( ln(2*_pi) + ln(e(rss)/`wtobs') + 1 )

					/* Compute delta-bar */
		gen double `delthat' = `mills' * (`mills' + `pxb')
		sum `delthat' if `touse' & `seldep', meanonly
		scalar `deltbar' = r(mean)

					/* Second-step -- regression w/ Mills */
		if "`constant'" == "" {
			tempvar one
			gen byte `one' = 1
		}
    		regress `depvar' `varlist' `one' `mills' `wgt', nocons, /*
			*/ if `touse' & `seldep'
		mat `breg' = get(_b)

					/* Heckman's two-step consistent 
		 			 * estimates of sigma and rho */
		tempname rss ebar adj ratio
		if e(rss) == . {
			tempvar e
			predict double `e' if `touse', resid
			replace `e' = sum(`e'^2)
			scalar `rss' = `e'[_N]
			if `rss' == . {
				error 1400
			}
		}
		else    scalar `rss' = e(rss)
		
		scalar `ebar' = `rss' / e(N)
		scalar `sigma' = sqrt(`ebar' + `deltbar'*_b[`mills']^2)

		scalar `rho' = _b[`mills'] / `sigma'
		scalar `rho1' = `rho'
		if abs(`rho') > 1 & `rhometh' >= 1 & `rhometh' <= 2 {
			scalar `rho' = `rho'/abs(`rho')
			if "`twostep'" != "" {
				noi di as txt "note: two-step estimate " /*
				*/ "of rho = "  `rho1' " is being "        /*
				*/ "truncated to " `rho'
			}
			if `rhometh' == 2 {
				scalar `sigma' = _b[`mills']*`rho'
			}
		}
		if `sigma' == 0 {
			scalar `sigma' = .001
		}
		if `rho' == . {
			scalar `rho' = 0
		}

		if "`twostep'" != "" {
			if "`lvmills'" != "" {
				rename `mills' `lvmills'
				local mills `lvmills'
				label var `mills' "nonselection hazard"
			}
			noi Heck2 `breg' `rho' `sigma' `bprb' `Vprb'	/*
			*/ `depvar' "`varlist'" "`constant'" "`seldep'"	/*
			*/ "`selind'" "`selnc'" "`mills'" "`delthat'"	/*
			*/ "`touse'" "`rhometh'" "`rho1'"
		}
		else {
			scalar `athrho' = max(min(`rho',.85), -.85)
			scalar `athrho' = 0.5 * log((1+`athrho') / /*
				*/ (1-`athrho'))
			scalar `lnsigma' = ln(`sigma')
			mat `b0' = `breg'[1,1..(colsof(`breg')-1)] ,   /*
				*/ `bprb' , `athrho' , `lnsigma'
		}


	}
end


/*  Note:  Heck2 assumes that the regression w/ a Mills ratio is the
 *  current set of estimates */

program define Heck2, eclass   /* BetaReg rho sigma Cov(probit) 
				  RegVars RecCons PrbVars Mills touse */
	args	    b		/*  regression Beta
		*/  rho		/*  
		*/  sigma	/*
		*/  bprb	/*  probit Beta
		*/  Vprb	/*  probit VCE
		*/  depvar		/*  dependent variable
		*/  varlist		/*  independent varlist
		*/  constant		/*  "" or "noconstant"
		*/  seldep	/*  selection eqn dependent variable
		*/  selind	/*  selection eqn indep varlist
		*/  selnc	/*  selection eqn : "" or "noconstant"
		*/  mills	/*  Mills' ratio
		*/  delthat	/*
		*/  touse	/*  To use variable
		*/  rhometh	/*  method of using rho
		*/  rho1	/*  original two-step rho if outide -1,1 */

	tempname XpX1 F Q rho2 VBm 

	/* Compute Heckman's two-step consistent estimates of Cov */

					/* Get X'X inverse from the 
					 * second-step regression */

	if e(rmse) != 0 {
		matrix `XpX1' = get(VCE) / e(rmse)^2
	}
	else {
		di as err /*
*/ "insufficient information in sample to estimate heckman model"
		exit 2000
	}

					/*  Heckman's adjustment to Cov  */
	local fulnam `varlist'
	if "`constant'" == "" {
		tempvar one
		g byte `one' = 1
		local fulnam "`fulnam' _cons"
	}
	local fulnam "`fulnam' lambda"
	local kreg : word count `fulnam'
	local kreg1 = `kreg' + 1
	qui mat accum `F' = `varlist' `one' `mills' `selind' [iw=`delthat'], /*
		*/ `selnc', if `touse' & `seldep'
	mat `F' = `F'[1..`kreg', `kreg1'...]
	mat rowname `F' = `fulnam'
	scalar `rho2' = `rho' * `rho'
	mat `Q' = `rho2' * `F'*`Vprb'*`F''

					/* Finish the variance computation */
	tempvar rho2del
	if (`rho' < -1 | `rho' > 1) & `rhometh' == 3 {
		scalar `rho2' = 1
	}
	qui gen double `rho2del' = 1 - `rho2' * `delthat'  if `touse'
	qui mat accum `VBm' = `varlist' `one' `mills' [iw=`rho2del'], /*
		*/ nocons,  if `touse' & `seldep'
	mat `VBm' = `sigma'^2 * `XpX1' * (`VBm' + `Q') * `XpX1'

					/* Build the set of full eqn names */
	local eqnam
	tokenize `fulnam'
	local i 1
	while `i' < `kreg' {
		local eqnam `eqnam' `depvar':``i''
		local i = `i' + 1
	}

	if substr("`seldep'",1,2) != "__" {
		local selname `seldep'
	}
	else    local selname select
	local kprb : word count `selind'
	local i 1
	tokenize `selind'
	while `i' <= `kprb' {
		local eqnam `eqnam' `selname':``i''
		local i = `i' + 1
	}
	if "`selnc'" == "" {
		local eqnam `eqnam' `selname':_cons 
		local kprb = `kprb' + 1
	}
	local eqnam `eqnam' mills:lambda

					/*  Put model and selection 
					 *  equation together 
					 *  Quicker w/ matrix expr, but would
					 *  be hard to understand */

	tempname bfull Vfull zeros Vmills CovMill zeroPrb b0 bmills
	local kreg0 = `kreg' - 1
	mat `b0' = `b'[1,1..`kreg0'] 
	mat `bmills' = `b'[1,`kreg'] 
	mat `bfull' = `b0', `bprb' , `bmills'
	mat `Vmills' = `VBm'[`kreg', `kreg']
	mat `CovMill' = `VBm'[1..`kreg0', `kreg']
	mat `VBm' = `VBm'[1..`kreg0', 1..`kreg0']
	mat `zeros' = J(`kreg0', `kprb', 0)
	mat `zeroPrb' = J(`kprb', 1, 0)
	mat `VBm' = /*
		*/  ( `VBm'       , `zeros'    ,  `CovMills' \      /*
		*/    `zeros''    , `Vprb'     ,  `zeroPrb'  \      /*
		*/    `CovMills'' , `zeroPrb'' ,  `Vmills' )
	mat `VBm' = (`VBm' + `VBm'') / 2
	mat colnames `bfull' = `eqnam'
	mat rownames `VBm' = `eqnam'
	mat colnames `VBm' = `eqnam'

	qui count if `touse'
	capture eret post `bfull' `VBm', obs(`r(N)')
	if _rc {
		if _rc == 506 {
			di as err "estimate of rho outside the interval "  /*
				*/ "[-1, 1] has led to a covariance matrix"
			di as err "that is not positive definite"
			* mat `VBm' = 0*`VBm'
			mat `VBm'[1, 1] = 0*`VBm'[1..`kreg0', 1..`kreg0']
		}
		eret post `bfull' `VBm', obs(`r(N)')
	}

	eret scalar N = `r(N)'
	capture qui test `varlist', min
	if _rc == 0 {
		eret scalar chi2 = `r(chi2)'
		eret scalar df_m = `r(df)'
		eret scalar p    = `r(p)'
	}
	qui count if `seldep' == 0 & `touse'
	eret scalar N_cens = r(N)	/* early, sic */
	eret local chi2type "Wald"
	eret local title2 "(regression model with sample selection)"
	eret local title "Heckman selection model -- two-step estimates"
	if substr("`mills'", 1, 2) != "__" {
		eret local mills `mills'
	}
	eret scalar rho = `rho'
	if `rho1' != `rho' {
		eret scalar rho1 = `rho1'
	}
	eret scalar sigma = `sigma'
	eret scalar lambda = [mills]_b[lambda]
	eret scalar selambda = [mills]_se[lambda]
	eret local predict "heckma_p"
end
 
/* Fit miss-specified model. */
program define FitMiss, rclass
	syntax varlist if [,		/*
	*/ constant			/*
	*/ mlopts(string)		/*
	*/ offset(passthru)		/*
	*/ sel(passthru)		/*
	*/ MEFF				/*
	*/ MEFT				/*
	*/ *				/*
	*/ ]

	svyopts junk junk2 junk3, `options'
	local subcond `s(subpop)'

	tempname touse
	mark `touse' `if'
	eret clear
	if "`meff'`meft'" != "" {
		di _n as txt "Computing misspecified "		///
			as res "heckman"			///
			as txt " model for meff/meft computation:"
		if "`subcond'" != "" {
			local mysubtouse (`touse' & `subcond' != 0)
		}
		else    local mysubtouse `touse'
		heckman `varlist'	/*
		*/ if `mysubtouse',	/*
		*/ `constant'		/*
		*/ `mlopts'		/*
		*/ `offset'		/*
		*/ `sel'		/*
		*/
	}
	return local results `meff'`meft'
end

/* process the selecton equation
	[depvar =] indvars [, noconstant offset ]
*/
program define SelectEq
	args seldep selind selnc seloff colon sel_eqn

	gettoken depvar rest : sel_eqn, parse(" =")
	gettoken equal rest : rest, parse(" =")

	if "`equal'" == "=" {
		unab depvar : `depvar'
		c_local `seldep' `depvar' 
	}
	else	local rest `"`sel_eqn'"'
	
	local 0 `"`rest'"'
	syntax [varlist(numeric default=none)] 	/*
		*/ [, noCONstant OFFset(varname numeric) ]

	if "`constant'" != "" & "`varlist'" == "" {
		di as err "no variables specified for selection equation"
		exit 198
	}

	c_local `selind' `varlist'
	c_local `selnc' `constant'
	c_local `seloff' `offset'
end

exit

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -