⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 intrg2_ll.ado

📁 是一个经济学管理应用软件 很难找的 但是经济学学生又必须用到
💻 ADO
字号:
*! version 1.0.0  22feb2002
program define intrg2_ll /* maximized in b = beta, s = sigma */
	version 7
	args todo b lnf g H g1 g2

	tempname s
	tempvar  xb phi se dseds ln2ps

	mleval `xb' = `b', eq(1)
	mleval `s'  = `b', eq(2) scalar

	if `s' < 0 {
		scalar `s' = -`s'
		matrix `b'[1,colsof(matrix(`b'))] = `s'
	}

	qui gen double `se' = `s'
	qui gen double `dseds' = 1
	if("$ML_wtyp"=="aweight") {	/* ml won't treat aweights right */
		qui replace `dseds' = sqrt($ML_w)
		qui replace `se' = `se'/`dseds'
	}

	local y1 $ML_y1
	local y2 $ML_y2
	local z1 ((`y1'-`xb')/`se')
	local z2 ((`y2'-`xb')/`se')

/* Check if we will have normprob() == 0.
   Note: normprob(-37) = 6e-300, normprob(-38) = 0.
*/
	local bad 37 /* also set in Int0_ll below */

	capture assert !(`y1'!=.&`z1'>`bad' | `y2'!=.&`z2'<-`bad') /*
	*/ if $ML_samp & `y1'!=`y2'

	global S_BADLC /* erase macros which may have been set by Int0ll */
	global S_BADRC
        if _rc { /* normprob() == 0 */
		Int0_ll `todo' `lnf' `g' `H' `g1' `g2' `xb' `se' `dseds'
		exit
	}

	quietly {
		gen double `phi' = cond(`y1'!=.&`y2'!=., /*
		*/ cond(`z1'>0,normprob(-`z1')-normprob(-`z2'), /*
		*/             normprob(`z2') -normprob(`z1')), /*
		*/ cond(`y2'!=.,normprob(`z2'),normprob(-`z1'))) /*
		*/ if $ML_samp & `y1'!=`y2'

	 	gen double `ln2ps' = -0.5*ln(2*_pi) - ln(`se') 

		mlsum `lnf' = cond(`y1'==`y2',-`z1'^2/2+`ln2ps',ln(`phi')) /*
			*/    / (`dseds' * `dseds') 
	/* ml applies aweights in a wrong way, here to adjust it back */

		if `todo' == 0 | `lnf'==. {
			exit
		}

		tempname d1 d2

		local dphi  ( cond(`y2'!=., -normd(`z2')/`se', 0) /*
			*/ - cond(`y1'!=., -normd(`z1')/`se', 0) )
		local ydphi ( cond(`y2'!=., -`z2'*normd(`z2'), 0) /*
			*/ - cond(`y1'!=., -`z1'*normd(`z1'), 0) )

		replace `g1' = cond(`y1'==`y2', `z1'/`se', `dphi'/`phi') /*
			*/ if $ML_samp
		replace `g2' = cond(`y1'==`y2', `z1'*`z1'-1, /*
			*/ `ydphi'/`phi')/`se' if $ML_samp

		mlvecsum `lnf' `d1' = `g1' / `dseds', eq(1)
		mlvecsum `lnf' `d2' = `g2' / `dseds', eq(2)
		mat `g' = (`d1',`d2')

		if `todo' == 1 | `lnf'==. {
			exit
		}

		tempname d11 d12 d22

		local z1dphi ( cond(`y2'!=., `z2'*normd(`z2')/`se'^2, 0) /*
			*/ - cond(`y1'!=., `z1'*normd(`z1')/`se'^2, 0) )
		local z2dphi ( cond(`y2'!=., /*
			*/ normd(`z2')*(`z2'*`z2'/`se'-1/`se'),0) /*
			*/ - cond(`y1'!=., /*
			*/ normd(`z1')*(`z1'*`z1'/`se'-1/`se'),0) )
		local z3dphi ( cond(`y2'!=., /*
			*/ normd(`z2')*(`z2'^3-`z2'),0) /*
			*/ - cond(`y1'!=., /*
			*/ normd(`z1')*(`z1'^3-`z1'),0) )

		mlmatsum `lnf' `d11' = cond(`y1'==`y2', 1/`se'^2, /*
			*/ (`z1dphi'+`dphi'^2/`phi')/`phi'), eq(1)

		mlmatsum `lnf' `d12' = cond(`y1'==`y2',2*`z1'/`se', /*
			*/ (`z2dphi'+`dphi'*`ydphi'/`phi')/`phi')/`se', eq(1,2)

		mlmatsum `lnf' `d22' = cond(`y1'==`y2',2*`z1'^2, /*
			*/ (`z3dphi'+`ydphi'^2/`phi')/`phi')/(`se'^2), eq(2)

		mat `H' = (`d11',`d12' \ `d12'',`d22')
	}
end

program define Int0_ll
	args todo lnf g H g1 g2 xb se dseds

	tempvar  BADLC BADRC phi lnphi ln2ps

	local y1  $ML_y1
	local y2  $ML_y2
	local z1  ((`y1'-`xb')/`se')
	local z2  ((`y2'-`xb')/`se')
	local bad 37 /* also set in main routine above */

	quietly {
		gen byte `BADLC' = ($ML_samp&`y1'!=`y2'&`y2'!=.&`z2'<-`bad')
		gen byte `BADRC' = ($ML_samp&`y1'!=`y2'&`y1'!=.&`z1'>`bad')

		count if `y1'!=. & `y2'!=. & `BADLC'
		if r(N) > 0 {
			global S_BADLC `r(N)' /* # of "bad" intervals */
		}
		count if `y1'!=. & `y2'!=. & `BADRC'
		if r(N) > 0 {
			global S_BADRC `r(N)' /* # of "bad" intervals */
		}
				/* Note: "Bad" intervals (i.e., intervals with
				   both endpoints <-`bad' or >`bad) are handled
				   as bad left-censored or bad right-censored
				   observations.  This is an excellent
				   approximation for wide intervals, but only a
				   fair approximation for narrow intervals;
				   hence, we issue a warning if they occur at
				   the FINAL iteration.  Implementing a good
				   asymptotic approximation for narrow intervals
				   would be difficult.
				*/

		gen double `phi' = cond(`y1'!=.&`y2'!=., /*
		*/ cond(`z1'>0,normprob(-`z1')-normprob(-`z2'), /*
		*/             normprob(`z2') -normprob(`z1')), /*
		*/ cond(`y2'!=.,normprob(`z2'),normprob(-`z1'))) /*
		*/ if $ML_samp & `y1'!=`y2'

		gen double `lnphi' = ln(`phi')

		Lnphi replace `lnphi'  `z2' if `BADLC'
		Lnphi replace `lnphi' -`z1' if `BADRC'

		gen double `ln2ps' = -0.5*ln(2*_pi) - ln(`se')

		mlsum `lnf' = cond(`y1'==`y2',-`z1'^2/2+`ln2ps',`lnphi') /*
		*/	     / (`dseds' * `dseds')

		if `todo' == 0 | `lnf'==. {
			exit
		}

		tempname d1 d2

		local dphi  ( cond(`y2'!=., -normd(`z2')/`se', 0) /*
			*/ - cond(`y1'!=., -normd(`z1')/`se', 0) )
		local ydphi ( cond(`y2'!=., -`z2'*normd(`z2'), 0) /*
			*/ - cond(`y1'!=., -`z1'*normd(`z1'), 0) )

		tempvar mills
		Mills "gen double" `mills'  `z2' if `BADLC'
		Mills replace      `mills' -`z1' if `BADRC'

		replace `g1' = cond(`y1'==`y2', `z1'/`se', /*
		*/ cond(`BADLC',-`mills'/`se',cond(`BADRC',`mills'/`se', /*
		*/ `dphi'/`phi'))) if $ML_samp

		replace `g2' = cond(`y1'==`y2',`z1'*`z1'-1, /*
		*/ cond(`BADLC',`mills'*(-`z2'),cond(`BADRC',`z1'*`mills', /*
		*/ `ydphi'/`phi')))/`se' if $ML_samp

		mlvecsum `lnf' `d1' = `g1' / `dseds', eq(1)
		mlvecsum `lnf' `d2' = `g2' / `dseds', eq(2)
		mat `g' = (`d1',`d2')

		if `todo' == 1 | `lnf'==. {
			exit
		}

		tempname d11 d12 d22

		local z1dphi ( cond(`y2'!=., `z2'*normd(`z2')/`se'^2, 0) /*
			*/ - cond(`y1'!=., `z1'*normd(`z1')/`se'^2, 0) )
		local z2dphi ( cond(`y2'!=., /*
			*/ normd(`z2')*(`z2'*`z2'/`se'-1/`se'),0) /*
			*/ - cond(`y1'!=., /*
			*/ normd(`z1')*(`z1'*`z1'/`se'-1/`se'),0) )
		local z3dphi ( cond(`y2'!=., /*
			*/ normd(`z2')*(`z2'^3-`z2'),0) /*
			*/ - cond(`y1'!=., /*
			*/ normd(`z1')*(`z1'^3-`z1'),0) )

		mlmatsum `lnf' `d11' = cond(`y1'==`y2',1, /*
		*/ cond(`BADLC',`mills'*(`z2'+`mills')/`se'^2, /*
		*/ cond(`BADRC',`mills'*(-`z1'+`mills')/`se'^2, /*
		*/ (`z1dphi'+`dphi'^2/`phi')/`phi'))), eq(1)

		mlmatsum `lnf' `d12' = cond(`y1'==`y2',`y1', /*
		*/ cond(`BADLC',`z2'/`se'*`mills'*(`z2'+`mills') /*
		*/	-`mills'/`se', /*
		*/ cond(`BADRC',`z1'/`se'*`mills'*(-`z1'+`mills') /*
		*/	+`mills'/`se', /*
		*/ (`z2dphi'+`dphi'*`ydphi'/`phi')/`phi')))/`se', eq(1,2)

		mlmatsum `lnf' `d22' = cond(`y1'==`y2',`y1'^2+1/`se'^2, /*
		*/ cond(`BADLC',`z2'^2*`mills'*(`z2'+`mills')-`mills'*`z2', /*
		*/ cond(`BADRC',`z1'^2*`mills'*(-`z1'+`mills')+`mills'*`z1', /*
		*/ (`z3dphi'+`ydphi'^2/`phi')/`phi')))/(`se'^2), eq(2)

		mat `H' = (`d11',`d12' \ `d12'',`d22')
	}
end

program define Lnphi /* `y' = ln(normprob(`x')) as `x'->-inf */
	gettoken gen 0 : 0
	gettoken y   0 : 0
	gettoken x   0 : 0
	local x (`x')
	tempname sqrt2pi
	scalar `sqrt2pi' = sqrt(2*_pi)
	qui `gen' `y' = -(0.5*`x'^2+ln(`sqrt2pi'*(-`x')) /*
	*/ +(1-(2.5-(37/3-(353/4)/`x'^2)/`x'^2)/`x'^2)/`x'^2) `0'
end

program define Mills /* `y' = normd(`x')/normprob(`x') as `x'->-inf  */
	gettoken gen  0 : 0
	gettoken y    0 : 0
	gettoken x    0 : 0
	local x (`x')
	qui `gen' `y' = (-`x') /*
	*/ *(1+(1-(2-(10-74/`x'^2)/`x'^2)/`x'^2)/`x'^2) `0'
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -