⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fcm.txt

📁 fcm算法的matlab实现
💻 TXT
字号:
function [features, targets] = fuzzy_k_means(train_features, train_targets, Nmu, region, plot_on)

%Reduce the number of data points using the fuzzy k-means algorithm
%Inputs:
% train_features - Input features
% train_targets - Input targets
% Nmu - Number of output data points
% region - Decision region vector: [-x x -y y number_of_points]
%   plot_on         - Plot stages of the algorithm
%
%Outputs
% features - New features
% targets - New targets

if (nargin < 5),
   plot_on = 0;
end

b = 2;
L = length(train_targets);
dist = zeros(Nmu,L);
label = zeros(1,L);

%Initialize the mu's
mu = randn(2,Nmu);
mu = sqrtm(cov(train_features',1))*mu + mean(train_features')'*ones(1,Nmu);
old_mu = zeros(2,Nmu);

%Initialize the P's
P = randn(Nmu,L);
old_P = zeros(Nmu,L);

while ((sum(sum(mu == old_mu)) == 0) & (sum(sum(P == old_P)) == 0)),
  old_mu = mu;
  old_P  = P;
  
  %Classify all the features to one of the mu's
  for i = 1:Nmu,
     dist(i,:) = sum((train_features - mu(:,i)*ones(1,L)).^2);
  end
  
  %Recompute P's
  for i = 1:Nmu,
     P(i,:) = (1./dist(i,:)).^(1/(b-1));
  end
  P = P ./ (ones(Nmu,1) * sum(P));
  
  %Recompute the mu's
  for i = 1:Nmu,
     mu(:,i) = (sum((((ones(2,1)*P(i,:)).^b).*train_features)')./sum(((ones(2,1)*P(i,:)).^b)'))';
  end

  if (plot_on == 1),
     plot_process(mu)
  end

end

%Make the decision region
[m,label] = max(P);
targets = zeros(1,Nmu);
if (Nmu > 1),
for i = 1:Nmu,
  if (length(train_targets(:,find(label == i))) > 0),
      targets(i) = (sum(train_targets(:,find(label == i)))/length(train_targets(:,find(label == i))) > .5);
  end
end
else
  %There is only one center
  targets = (sum(train_targets)/length(train_targets) > .5);
end

features = mu;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -