📄 adaboost.h
字号:
/****************************************************************************
NJU Magic. Copyright (c) 2007. All Rights Reserved.
--------------------------------------------------------------------
Permission to use, copy, or modify this software and its documentation
for educational and research purposes only and without fee is hereby
granted, provided that this copyright notice appear on all copies and
supporting documentation. For any other uses of this software, in
original or modified form, including but not limited to distribution
in whole or in part, specific prior permission must be obtained from
NJU Magic and the authors. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware product
without first obtaining appropriate licenses from NJU Magic. NJU Magic
makes no representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.
---------------------------------------------------------------------
File: adaboost.h
Authors: Yao Wei
Date Created : 2007-8-11
****************************************************************************/
#ifndef ADA_BOOST_H
#define ADA_BOOST_H
#include "WeakLearner.h"
#include "mex.h"
class Boosting
{
private:
int n_samples; //number of train sample
int n_input; //dimension of each sample
int max_iter; //max number of boost step
WeakLearner *leaner; //all weaker leaner
//information of train set contains: #class, #each class and each class item
//that is to say, if we have label={1,1,2,6,4,1,4,4,6,1,6,2,1,1,1,4,4}; we will get
//# class: count=4
//concrete label: eachlabel={1,2,6,4}
//each count of label: eachcount={7,2,3,5}
struct taginfo
{
taginfo()
{
count = 0;
eachlabel = 0;
eachcount = 0;
}
int count; //class count;
int *eachcount; //each class's count
double *eachlabel; //store all label
}info;
Mat *submat; //sub-sample correspond to each class
public:
//matlab interface of boosting train
void mexTrain(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]);
//matlab interface of boosting predict
void mexPredict(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]);
Boosting(); //Construction
virtual ~Boosting();
private:
// free memory
void Free();
//predict a sample using majority voting
double Vote(double *feature,int n_input);
//set iteration of Boosting
void SetIteration(int _max_iter){max_iter = _max_iter;}
//train Multi-Class Boosting
void DoTrain();
//train Boosting 1 vs 1
WeakLearner TrainOneVsOne
(const Mat &mat1,const Mat &mat2,double label1,double label2);
//get information of train data
void GetClassInfo(const Vec &responses);
//preprocess train data
void Preprocess(const Mat &train,const Vec &responses);
//unroll data according to each class label
void UnrollData(const Mat &train,const Vec &responses);
};
#endif //ADA_BOOST_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -