📄 weaklearner.h
字号:
/****************************************************************************
NJU Magic. Copyright (c) 2007. All Rights Reserved.
--------------------------------------------------------------------
Permission to use, copy, or modify this software and its documentation
for educational and research purposes only and without fee is hereby
granted, provided that this copyright notice appear on all copies and
supporting documentation. For any other uses of this software, in
original or modified form, including but not limited to distribution
in whole or in part, specific prior permission must be obtained from
NJU Magic and the authors. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware product
without first obtaining appropriate licenses from NJU Magic. NJU Magic
makes no representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.
---------------------------------------------------------------------
File: WeakLearner.h
Authors: Yao Wei
Date Created : 2007-8-11
****************************************************************************/
#ifndef WEAKLEARNER_H
#define WEAKLEARNER_H
#include "global.h"
//vector
typedef struct Vec
{
public:
//free memory
void Free();
//set the length of vector, allocate memory
void Set(int n);
//get dimension of vector
int length() const { return n; }
//operator []: so you can use vec[i]
double &operator [](int i)const
{
return vector[i];
}
//get the raw vector data
operator double* ()const {return vector;}
/* double * getdata() const {return vector;} */
Vec();
Vec(int _n);
virtual ~Vec();
private:
//dimension
int n;
//data
double *vector;
//flag
bool isfree;
}Vec;
//matrix
typedef struct Mat
{
public:
//set the row&col of matrix, allocate memory
void Set(int row, int col);
//free memory
void Free();
//Add a row vector to the matrix
void AddRow(const Vec &feature);
//operator []: so you can use matrix[i][j]
Vec &operator[](int i)const { return matrix[i]; }
//get col of matrix
int cols () const { return col; }
//get row of matrix
int rows () const { return row; }
Mat(int _row, int _col);
Mat();
virtual ~Mat();
private:
//row
int row;
//col
int col;
//data
Vec *matrix;
//flag
bool isfree;
//iterator
int _iterator;
}Mat;
class WeakLearner;
class Boosting;
/*
simple threshold function h(x) on a feature x :
h(x) = 1 if p.x < p.threshold
h(x) = -1 othrewise
where p is a parity to indicate the direction of the inequality
*/
class DecisionStump
{
friend class WeakLearner;
friend class Boosting;
public:
DecisionStump();
~DecisionStump();
// Perform a round training
void RoundTrain(const Mat &mat1, const Mat &mat2, double* _weights);
// Classify which is a simple threshold function
const int Classify(double *feature, int n_input)const
{
return feature[_d] > _threshold ? _sign : -_sign;
}
private:
// QuickSort Algorithm
void QuickSort(double* values,int* indices,const int l,const int r);
private :
// The data dimension
int _d;
// The threshold
double _threshold;
// The sign of the classifier (+1 or -1)
int _sign;
};
//a set of simple threshold function called weaklearner
class WeakLearner
{
public:
friend class Boosting;
WeakLearner();
~WeakLearner();
// Allocate memory & intialise
void Init(int num, double label1, double label2);
// Free memory
void Free();
// Add a stump-based weaklearner to WeakLearner-Pool
void AddStump(const DecisionStump& stump, double _alpha);
// Classify a feature vector
double Classify(double * feature, int n_input);
private:
DecisionStump * decisionstump;
double *alpha;
//current number of weaklearner
int _iterator;
//max number of weaklearner
int maxnum;
// + label
double positive_label;
// - label
double negative_label;
};
#endif //WEAKLEARNER_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -