📄 train.m
字号:
function net = train(net, tutor, varargin)
% TRAIN
%
% Train a dag-svm multi-class support vector classifier network using the
% specified tutor to train each component two-class network.
%
% load data/iris x y;
%
% C = 100;
% kernel = rbf(0.5);
% tutor = smosvctutor;
%
% net = train(dagsvm, tutor, x, y, C, kernel);
%
% File : @dagsvm/train.m
%
% Date : Wednesday 13th September 2000
%
% Author : Dr Gavin C. Cawley
%
% Description : Gateway function used to train a max-win multi-class support
% vector classifier network using a given tutor. Part of an
% object-oriented implementation of Vapnik's Support Vector
% Machine, as described in [1].
%
% References : [1] V.N. Vapnik,
% "The Nature of Statistical Learning Theory",
% Springer-Verlag, New York, ISBN 0-387-94559-8,
% 1995.
%
% History : 13/09/2000 - v1.00
% 28/11/2000 - v1.01 minor bugfix
%
% Copyright : (c) Dr Gavin C. Cawley, September 2000
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%
x = varargin{1};
y = varargin{2};
n = 1;
for i=1:size(y, 2)
for j=1:i-1
idx = [find(y(:,i) > 0) ; find(y(:,j) > 0)];
varargin{1} = x(idx,:);
varargin{2} = y(idx,i);
net.net(n) = train(svc, tutor, varargin{:});
n = n + 1;
end
end
% bye bye...
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -