⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 primes.java

📁 java高级使用教程 全书一共分六章
💻 JAVA
字号:
// Primes - an enumerator yielding prime numbers
//
// Copyright (C) 1996 by Jef Poskanzer <jef@acme.com>.  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
//
// Visit the ACME Labs Java page for up-to-date versions of this and other
// fine Java utilities: http://www.acme.com/java/

package Acme;

import java.util.*;

/// An enumerator yielding prime numbers.
// <P>
// Enumerates all the prime numbers in a given range.
// <P>
// Sample code:
// <BLOCKQUOTE><PRE>
// Primes primes = new Acme.Primes( 1000, 2000 );
// while ( primes.hasMoreElements() )
//     {
//     // Get the next element as an Object:
//     long prime = ((Long) primes.nextElement()).longValue();
//     // Or alternatively, as a long:
//     long prime = primes.nextElementL();
//     // Then do whatever you like with prime.
//     }
// </PRE></BLOCKQUOTE>
// <P>
// <A HREF="/resources/classes/Acme/Primes.java">Fetch the software.</A><BR>
// <A HREF="/resources/classes/Acme.tar.gz">Fetch the entire Acme package.</A>

public class Primes implements Enumeration
    {

    private long from;
    private long to;
    private long n;
    private long nextEle;

    public Primes( long from, long to )
	{
	this.from = from;
	this.to = to;
	n = from;
	}

    private boolean gotOne = false;

    private void getOne()
	{
	if ( n == 2L )
	    {
	    nextEle = 2L;
	    n = 3L;
	    gotOne = true;
	    return;
	    }
	if ( n == 3L )
	    {
	    nextEle = 3L;
	    n = 5L;
	    gotOne = true;
	    return;
	    }
	n = sixPM1( n );
	long nextInc = sixPM1Inc( n );
	while ( n <= to )
	    {
	    boolean is = isPrime( n );
	    if ( is )
		{
		nextEle = n;
		n += nextInc;
		nextInc = 6L - nextInc;
		gotOne = true;
		return;
		}
	    n += nextInc;
	    nextInc = 6L - nextInc;
	    }
	gotOne = false;
	return;
	}

    public boolean hasMoreElements()
	{
	if ( ! gotOne )
	    getOne();
	return gotOne;
	}

    public Object nextElement()
	{
	return new Long( nextElementL() );
	}

    public long nextElementL()
	{
	if ( ! gotOne )
	    getOne();
	gotOne = false;
	return nextEle;
	}
    
    private final long sixPM1( long n )
	{
	long m = n % 6L;
	switch ( (int) m )
	    {
	    case 0: return n + 1L;
	    case 1: return n;
	    case 2: return n + 3L;
	    case 3: return n + 2L;
	    case 4: return n + 1L;
	    case 5: return n;
	    }
	return n;
	}
    private final long sixPM1Inc( long n )
	{
	long m = n % 6L;
	switch ( (int) m )
	    {
	    case 1: return 4L;
	    case 5: return 2L;
	    }
	return n;
	}

    private static final int tableSize = 10000;
    private static byte[] table = new byte[tableSize];
    private static final byte DUNNO = 0;
    private static final byte YES = 1;
    private static final byte NO = 2;

    static
	{
	// Initialize the static table of small primes.
	for ( int i = 0; i < tableSize; ++i )
	    table[i] = DUNNO;
	table[0] = NO;
	table[1] = NO;
	table[2] = YES;
	table[3] = YES;
	table[4] = NO;
	table[5] = YES;
	table[6] = NO;
	table[7] = YES;
	table[8] = NO;
	table[9] = NO;
	table[10] = NO;
	table[11] = YES;
	table[12] = NO;
	table[13] = YES;
	table[14] = NO;
	table[15] = NO;
	table[16] = NO;
	table[17] = YES;
	table[18] = NO;
	table[19] = YES;
	table[20] = NO;
	table[21] = NO;
	table[22] = NO;
	table[23] = YES;
	table[24] = NO;
	table[25] = NO;
	table[26] = NO;
	table[27] = NO;
	table[28] = NO;
	table[29] = YES;
	table[30] = NO;
	table[31] = YES;
	}

    public synchronized boolean isPrime( long n )
	{
	// Ignore negatives.
	if ( n < 0L )
	    return false;

	// Use the saved table, if possible.
	if ( n < tableSize )
	    {
	    if ( table[(int) n] != DUNNO )
		return ( table[(int) n] == YES );
	    boolean is = isPrime2( n );
	    if ( is )
		table[(int) n] = YES;
	    else
		table[(int) n] = NO;
	    return is;
	    }

	// Just call the internal routine.
	return isPrime2( n );
	}

    private final boolean isPrime2( long n )
	{
	// Do trial-division by all primes up to the square root.
	// Get the list of divisors first from the table.
	long prime, cofactor;
	for ( prime = 2;
	      prime < tableSize && table[(int) prime] != DUNNO;
	      ++prime )
	    {
	    if ( table[(int) prime] == YES )
		{
		cofactor = n / prime;
		if ( cofactor < prime )
		    return true;
		if ( cofactor * prime == n )
		    return false;
		}
	    }
	// Ran out of table entries.  Generate new possible primes.
	prime = sixPM1( prime );
	long nextInc = sixPM1Inc( prime );
	for (;;)
	    {
	    cofactor = n / prime;
	    if ( cofactor < prime )
		return true;
	    if ( cofactor * prime == n )
		return false;
	    prime += nextInc;
	    nextInc = 6L - nextInc;
	    }
	}

    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -