📄 vtb3_2.m
字号:
function vtb3_2(m,c,k,Fo,tf)%VTB3_2 Step response of a SDOF system.% VTB3_2(m,c,k,Fo,tf) plots the response of the system to an% step of magnitude Fo. The input variables are the mass m,% the stiffness k, and the damping c. The total time of the % response is tf.% VTB3_2(zeta,w,fo,tf) plots the response of the system % described by the damping ratio zeta and the undamped % natural frequency w to a normalized step function (fo=Fo/m). if nargin==5 w=sqrt(k/m);zeta=c/2/w/m;fo=Fo/m; else tf=Fo;zeta=m;w=c;fo=k;endt=0:tf/300:tf;wd=w*sqrt(1-zeta^2);if zeta~=1 phi=atan(zeta/sqrt(1-zeta^2));endif (zeta<1 & zeta>=0) x=fo/w^2*(1-w/wd*exp(-zeta*w*t).*cos(wd*t-phi)); elseif zeta==1 lam=-w; A1=-fo/w^2; A2=-A1*lam; x=fo/w^2+A1*exp(lam*t)+A2*t.*exp(lam*t); elseif zeta>1 lam1=-zeta*w-w*sqrt(zeta^2-1); lam2=-zeta*w+w*sqrt(zeta^2-1); A2=fo/w^2/(lam2/lam1-1); A1=-lam2/lam1*A2; x=fo/w^2+A1*exp(lam1*t)+A2*exp(lam2*t); else disp('Zeta should be greater than zero')end aa=version;ll=length(aa);plot(t,x)xlabel('Time')ylabel('Displacement')title('Displacement versus Time')grid on
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -