📄 rfc3414.txt
字号:
Network Working Group U. BlumenthalRequest for Comments: 3414 B. WijnenSTD: 62 Lucent TechnologiesObsoletes: 2574 December 2002Category: Standards Track User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2002). All Rights Reserved.Abstract This document describes the User-based Security Model (USM) for Simple Network Management Protocol (SNMP) version 3 for use in the SNMP architecture. It defines the Elements of Procedure for providing SNMP message level security. This document also includes a Management Information Base (MIB) for remotely monitoring/managing the configuration parameters for this Security Model. This document obsoletes RFC 2574.Table of Contents 1. Introduction.......................................... 4 1.1. Threats............................................... 4 1.2. Goals and Constraints................................. 6 1.3. Security Services..................................... 6 1.4. Module Organization................................... 7 1.4.1. Timeliness Module..................................... 8 1.4.2. Authentication Protocol............................... 8 1.4.3. Privacy Protocol...................................... 8 1.5. Protection against Message Replay, Delay and Redirection....................................... 9 1.5.1. Authoritative SNMP engine............................. 9 1.5.2. Mechanisms............................................ 9 1.6. Abstract Service Interfaces........................... 11Blumenthal & Wijnen Standards Track [Page 1]RFC 3414 USM for SNMPv3 December 2002 1.6.1. User-based Security Model Primitives for Authentication.................................... 11 1.6.2. User-based Security Model Primitives for Privacy........................................... 12 2. Elements of the Model................................. 12 2.1. User-based Security Model Users....................... 12 2.2. Replay Protection..................................... 13 2.2.1. msgAuthoritativeEngineID.............................. 14 2.2.2. msgAuthoritativeEngineBoots and msgAuthoritativeEngineTime............................ 14 2.2.3. Time Window........................................... 15 2.3. Time Synchronization.................................. 15 2.4. SNMP Messages Using this Security Model............... 16 2.5. Services provided by the User-based Security Model.... 17 2.5.1. Services for Generating an Outgoing SNMP Message...... 17 2.5.2. Services for Processing an Incoming SNMP Message...... 20 2.6. Key Localization Algorithm............................ 22 3. Elements of Procedure................................. 22 3.1. Generating an Outgoing SNMP Message................... 22 3.2. Processing an Incoming SNMP Message................... 26 4. Discovery............................................. 31 5. Definitions........................................... 32 6. HMAC-MD5-96 Authentication Protocol................... 51 6.1. Mechanisms............................................ 51 6.1.1. Digest Authentication Mechanism....................... 51 6.2. Elements of the Digest Authentication Protocol........ 52 6.2.1. Users................................................. 52 6.2.2. msgAuthoritativeEngineID.............................. 53 6.2.3. SNMP Messages Using this Authentication Protocol...... 53 6.2.4. Services provided by the HMAC-MD5-96 Authentication Module................................. 53 6.2.4.1. Services for Generating an Outgoing SNMP Message...... 53 6.2.4.2. Services for Processing an Incoming SNMP Message...... 54 6.3. Elements of Procedure................................. 55 6.3.1. Processing an Outgoing Message........................ 55 6.3.2. Processing an Incoming Message........................ 56 7. HMAC-SHA-96 Authentication Protocol................... 57 7.1. Mechanisms............................................ 57 7.1.1. Digest Authentication Mechanism....................... 57 7.2. Elements of the HMAC-SHA-96 Authentication Protocol... 58 7.2.1. Users................................................. 58 7.2.2. msgAuthoritativeEngineID.............................. 58 7.2.3. SNMP Messages Using this Authentication Protocol...... 59 7.2.4. Services provided by the HMAC-SHA-96 Authentication Module................................. 59 7.2.4.1. Services for Generating an Outgoing SNMP Message...... 59 7.2.4.2. Services for Processing an Incoming SNMP Message...... 60 7.3. Elements of Procedure................................. 61Blumenthal & Wijnen Standards Track [Page 2]RFC 3414 USM for SNMPv3 December 2002 7.3.1. Processing an Outgoing Message........................ 61 7.3.2. Processing an Incoming Message........................ 61 8. CBC-DES Symmetric Encryption Protocol................. 63 8.1. Mechanisms............................................ 63 8.1.1. Symmetric Encryption Protocol......................... 63 8.1.1.1. DES key and Initialization Vector..................... 64 8.1.1.2. Data Encryption....................................... 65 8.1.1.3. Data Decryption....................................... 65 8.2. Elements of the DES Privacy Protocol.................. 65 8.2.1. Users................................................. 65 8.2.2. msgAuthoritativeEngineID.............................. 66 8.2.3. SNMP Messages Using this Privacy Protocol............. 66 8.2.4. Services provided by the DES Privacy Module........... 66 8.2.4.1. Services for Encrypting Outgoing Data................. 66 8.2.4.2. Services for Decrypting Incoming Data................. 67 8.3. Elements of Procedure................................. 68 8.3.1. Processing an Outgoing Message........................ 68 8.3.2. Processing an Incoming Message........................ 69 9. Intellectual Property................................. 69 10. Acknowledgements...................................... 70 11. Security Considerations............................... 71 11.1. Recommended Practices................................. 71 11.2. Defining Users........................................ 73 11.3. Conformance........................................... 74 11.4. Use of Reports........................................ 75 11.5. Access to the SNMP-USER-BASED-SM-MIB.................. 75 12. References............................................ 75 A.1. SNMP engine Installation Parameters................... 78 A.2. Password to Key Algorithm............................. 80 A.2.1. Password to Key Sample Code for MD5................... 81 A.2.2. Password to Key Sample Code for SHA................... 82 A.3. Password to Key Sample Results........................ 83 A.3.1. Password to Key Sample Results using MD5.............. 83 A.3.2. Password to Key Sample Results using SHA.............. 83 A.4. Sample encoding of msgSecurityParameters.............. 83 A.5. Sample keyChange Results.............................. 84 A.5.1. Sample keyChange Results using MD5.................... 84 A.5.2. Sample keyChange Results using SHA.................... 85 B. Change Log............................................ 86 Editors' Addresses.................................... 87 Full Copyright Statement.............................. 88Blumenthal & Wijnen Standards Track [Page 3]RFC 3414 USM for SNMPv3 December 20021. Introduction The Architecture for describing Internet Management Frameworks [RFC3411] describes that an SNMP engine is composed of: 1) a Dispatcher, 2) a Message Processing Subsystem, 3) a Security Subsystem, and 4) an Access Control Subsystem. Applications make use of the services of these subsystems. It is important to understand the SNMP architecture and the terminology of the architecture to understand where the Security Model described in this document fits into the architecture and interacts with other subsystems within the architecture. The reader is expected to have read and understood the description of the SNMP architecture, as defined in [RFC3411]. This memo describes the User-based Security Model as it is used within the SNMP Architecture. The main idea is that we use the traditional concept of a user (identified by a userName) with which to associate security information. This memo describes the use of HMAC-MD5-96 and HMAC-SHA-96 as the authentication protocols and the use of CBC-DES as the privacy protocol. The User-based Security Model however allows for other such protocols to be used instead of or concurrent with these protocols. Therefore, the description of HMAC-MD5-96, HMAC-SHA-96 and CBC-DES are in separate sections to reflect their self-contained nature and to indicate that they can be replaced or supplemented in the future. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].1.1. Threats Several of the classical threats to network protocols are applicable to the network management problem and therefore would be applicable to any SNMP Security Model. Other threats are not applicable to the network management problem. This section discusses principal threats, secondary threats, and threats which are of lesser importance. The principal threats against which this SNMP Security Model should provide protection are:Blumenthal & Wijnen Standards Track [Page 4]RFC 3414 USM for SNMPv3 December 2002 - Modification of Information The modification threat is the danger that some unauthorized entity may alter in-transit SNMP messages generated on behalf of an authorized principal in such a way as to effect unauthorized management operations, including falsifying the value of an object. - Masquerade The masquerade threat is the danger that management operations not authorized for some user may be attempted by assuming the identity of another user that has the appropriate authorizations. Two secondary threats are also identified. The Security Model defined in this memo provides limited protection against: - Disclosure The disclosure threat is the danger of eavesdropping on the exchanges between managed agents and a management station. Protecting against this threat may be required as a matter of local policy. - Message Stream Modification The SNMP protocol is typically based upon a connection-less transport service which may operate over any sub-network service. The re-ordering, delay or replay of messages can and does occur through the natural operation of many such sub- network services. The message stream modification threat is the danger that messages may be maliciously re-ordered, delayed or replayed to an extent which is greater than can occur through the natural operation of a sub-network service, in order to effect unauthorized management operations. There are at least two threats that an SNMP Security Model need not protect against. The security protocols defined in this memo do not provide protection against: - Denial of Service This SNMP Security Model does not attempt to address the broad range of attacks by which service on behalf of authorized users is denied. Indeed, such denial-of-service attacks are in many cases indistinguishable from the type of network failures with which any viable network management protocol must cope as a matter of course. - Traffic Analysis This SNMP Security Model does not attempt to address traffic analysis attacks. Indeed, many traffic patterns are predictable - devices may be managed on a regular basis by a relatively small number of management applications - and therefore there is no significant advantage afforded by protecting against traffic analysis.Blumenthal & Wijnen Standards Track [Page 5]RFC 3414 USM for SNMPv3 December 20021.2. Goals and Constraints Based on the foregoing account of threats in the SNMP network management environment, the goals of this SNMP Security Model are as follows. 1) Provide for verification that each received SNMP message has not been modified during its transmission through the network. 2) Provide for verification of the identity of the user on whose behalf a received SNMP message claims to have been generated. 3) Provide for detection of received SNMP messages, which request or contain management information, whose time of generation was not recent. 4) Provide, when necessary, that the contents of each received SNMP message are protected from disclosure. In addition to the principal goal of supporting secure network management, the design of this SNMP Security Model is also influenced
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -