📄 rfc3410.txt
字号:
It is the purpose of STD 62, RFC 3418, "Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)" [30], to define managed objects which describe the behavior of portions of an SNMP entity.7.5. Architecture / Security and Administration It is the purpose of STD 62, RFC 3411, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks" [23], to define an architecture for specifying Management Frameworks. While addressing general architectural issues, it focuses on aspects related to security and administration. It defines a number of terms used throughout the SNMPv3 Management Framework and, in so doing, clarifies and extends the naming of: * engines and applications, * entities (service providers such as the engines in agents and managers), * identities (service users), and * management information, including support for multiple logical contexts. The document contains a small MIB module which is implemented by all authoritative SNMPv3 protocol engines.7.6. Message Processing and Dispatch (MPD) STD 62, RFC 3412, "Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)" [24], describes the Message Processing and Dispatching for SNMP messages within the SNMP architecture. It defines the procedures for dispatching potentially multiple versions of SNMP messages to the proper SNMP Message Processing Models, and for dispatching PDUs to SNMP applications. This document also describes one Message Processing Model - the SNMPv3 Message Processing Model.Case, et. al. Informational [Page 17]RFC 3410 Applicability Statements for SNMP December 2002 An SNMPv3 protocol engine MUST support at least one Message Processing Model. An SNMPv3 protocol engine MAY support more than one, for example in a multi-lingual system which provides simultaneous support of SNMPv3 and SNMPv1 and/or SNMPv2c. For example, such a tri-lingual system which provides simultaneous support for SNMPv1, SNMPv2c, and SNMPv3 supports three message processing models.7.7. SNMP Applications It is the purpose of STD 62, RFC 3413, "Simple Network Management Protocol (SNMP) Applications" [25] to describe the five types of applications which can be associated with an SNMP engine. They are: Command Generators, Command Responders, Notification Originators, Notification Receivers, and Proxy Forwarders. The document also defines MIB modules for specifying targets of management operations (including notifications), for notification filtering, and for proxy forwarding.7.8. User-based Security Model (USM) STD 62, RFC 3414, the "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)" [26] describes the User-based Security Model for SNMPv3. It defines the Elements of Procedure for providing SNMP message-level security. The document describes the two primary and two secondary threats which are defended against by the User-based Security Model. They are: modification of information, masquerade, message stream modification, and disclosure. The USM utilizes MD5 [31] and the Secure Hash Algorithm [32] as keyed hashing algorithms [33] for digest computation to provide data integrity: * to directly protect against data modification attacks, * to indirectly provide data origin authentication, and * to defend against masquerade attacks. The USM uses loosely synchronized monotonically increasing time indicators to defend against certain message stream modification attacks. Automatic clock synchronization mechanisms based on the protocol are specified without dependence on third-party time sources and concomitant security considerations.Case, et. al. Informational [Page 18]RFC 3410 Applicability Statements for SNMP December 2002 The USM uses the Data Encryption Standard (DES) [34] in the cipher block chaining mode (CBC) if disclosure protection is desired. Support for DES in the USM is optional, primarily because export and usage restrictions in many countries make it difficult to export and use products which include cryptographic technology. The document also includes a MIB suitable for remotely monitoring and managing the configuration parameters for the USM, including key distribution and key management. An entity may provide simultaneous support for multiple security models as well as multiple authentication and privacy protocols. All of the protocols used by the USM are based on pre-placed keys, i.e., private key mechanisms. The SNMPv3 architecture permits the use of symmetric and asymmetric mechanisms and protocols (asymmetric mechanisms are commonly called public key cryptography) but, as of this writing, there are no SNMPv3 security models on the IETF standards track that use public key cryptography. Work is underway to specify how AES is to be used within the User- based Security Model (USM). This will be a separate document.7.9. View-based Access Control (VACM) The purpose of STD 62, RFC 3415, the "View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)" [27], is to describe the View-based Access Control Model for use in the SNMP architecture. The VACM can simultaneously be associated in a single engine implementation with multiple Message Processing Models and multiple Security Models. It is architecturally possible to have multiple, different, Access Control Models active and present simultaneously in a single engine implementation, but this is expected to be *_very_* rare in practice and *_far_* less common than simultaneous support for multiple Message Processing Models and/or multiple Security Models.7.10. SNMPv3 Coexistence and Transition The purpose of RFC 2576, "Coexistence between Version 1, Version 2, and Version 3 of the Internet-Standard Network Management Framework" [28], is to describe coexistence between the SNMPv3 Management Framework, the SNMPv2 Management Framework, and the original SNMPv1 Management Framework. In particular, this document describes four aspects of coexistence: * Conversion of MIB documents from SMIv1 to SMIv2 formatCase, et. al. Informational [Page 19]RFC 3410 Applicability Statements for SNMP December 2002 * Mapping of notification parameters * Approaches to coexistence between entities which support the various versions of SNMP in a multi-lingual network, in particular the processing of protocol operations in multi-lingual implementations, as well as behavior of proxy implementations * The SNMPv1 Message Processing Model and Community-Based Security Model, which provides mechanisms for adapting SNMPv1 and SNMPv2c into the View-Based Access Control Model (VACM) [27]8. Standardization Status Readers should consult the latest version of the "Internet Official Protocol Standards" list [20] to determine the standardization status of any document. However, the SNMPv3 Working Group explicitly requested that text be included in this document to amplify on the status of SMIv1, SNMPv1, and SNMPv2c.8.1. SMIv1 Status SMIv1, as described in STD 16, RFCs 1155 and 1212, was promoted to full Standard status in 1990 and has remained a Standard even after SMIv2 reached full Standard (see RFC 2026 [35] for more information about the Internet Standards Process). In many cases, a Standard is declared "Historic" when its replacement reaches full Standard. For example, MIB-1 [8] was declared "Historic" when MIB-2 [6] reached full Standard. Similarly, when SMIv2 reached full Standard, it might have been reasonable at that time to retire SMIv1 and declare it to be "Historic" but as the result of a conscious decision, STD 16, RFCs 1155 and 1212 continue to have the standardization status of full "Standard" but are not recommended. These documents were not declared "Historic" and remain on the standards track because they provide normative references for other documents on the standards track and cannot be declared "Historic" without rendering the documents which rely on them to also become "Historic". Consequently, STD 16 retains its standardization status but is not recommended because it has been superseded by the newer SMIv2 specifications which are identified somewhat later in this document. On a pragmatic level, since about 1993 it has been wise for users of the data definition language to use SMIv2 for all new work because the realities of the marketplace have occasionally required the support of data definitions in both the SMIv1 and SMIv2 formats. While there are tools widely available at low cost or no cost to translate SMIv2 definitions to SMIv1 definitions, it is impracticalCase, et. al. Informational [Page 20]RFC 3410 Applicability Statements for SNMP December 2002 to build automatic tools that automatically translate SMIv1 definitions to SMIv2 definitions. Consequently, if one works in primarily SMIv2, the cost of providing data definitions in both SMIv1 and SMIv2 formats is trivial. In contrast, if one works primarily in SMIv1 format, providing data definitions in both SMIv1 and SMIv2 is significantly more expensive. The market requirements today for providing data definitions in SMIv1 format are greatly diminished when compared to those of 1993, and SMIv2 continues to be the strongly preferred format even though SMIv1 has not been declared "Historic". Indeed, the IETF currently requires that new MIB modules be written using SMIv2.8.2. SNMPv1 and SNMPv2 Standardization Status Protocol operations via SNMPv1 and SNMPv2c message wrappers support only trivial authentication based on plain-text community strings and, as a result, are fundamentally insecure. When the SNMPv3 specifications for security and administration, which include strong security, reached full Standard status, the full Standard SNMPv1, formerly STD 15 [5], and the experimental SNMPv2c specifications described in RFC 1901 [16] were declared Historic due to their weaknesses with respect to security and to send a clear message that the third version of the Internet Standard Management Framework is the framework of choice. The Party-based SNMPv2 (SNMPv2p), SNMPv2u, and SNMPv2* were either declared Historic circa 1995 or were never on the standards track. On a pragmatic level, it is expected that a number of vendors will continue to produce and users will continue to deploy and use multi- lingual implementations that support SNMPv1 and/or SNMPv2c as well as SNMPv3. It should be noted that the IETF standards process does not control actions of vendors or users who may choose to promote or deploy historic protocols, such as SNMPv1 and SNMPv2c, in spite of known short-comings. However, it is not expected that vendors will produce nor that users will deploy multi-lingual implementations that support the Party-based SNMPv2p (SNMPv2p), SNMPv2u, or SNMPv2*. Indeed, as described above, one of the SNMPv3 specifications for security and administration, RFC 2576, Coexistence between Version 1, Version 2, and Version 3 of the Internet-Standard Management Framework [28], addresses these issues. Of course, it is important that users deploying multi-lingual systems with insecure protocols exercise sufficient due diligence to insure that configurations limit access via SNMPv1 and SNMPv2c appropriately, in keeping with the organization's security policy, just as they should carefully limit access granted via SNMPv3 with a security level of no authentication and no privacy which is roughlyCase, et. al. Informational [Page 21]RFC 3410 Applicability Statements for SNMP December 2002 equivalent from a security point of view. For example, it is probably unwise to allow SNMPv1 or SNMPv2c a greater level of access than is provided to unauthenticated SNMPv3 users, e.g., it does not make sense to guard the front door with armed guards, trained attack dogs, moats and drawbridges while providing unfettered access through an open back door. The SNMPv1 framework, SNMPv2 framework, and SNMPv2c had limited capabilities for administering the SNMPv1 and SNMPv2c protocols. For example, there are no objects defined to view and configure communities or destinations for notifications (traps and informs). The result has been vendor defined mechanisms for administration that range from proprietary format configuration files that cannot be viewed or configured via SNMP to enterprise specific object definitions. The SNMPv3 framework provides a rich standards-based approach to administration which, by design, can be used for the SNMPv1 and SNMPv2c protocols. Thus, to foster interoperability of administration of SNMPv1 and SNMPv2c protocols in multi-lingual systems, the mechanisms and objects specified in [25], [27], and [28] should be used to supplement or replace the equivalent proprietary mechanisms.8.3. Working Group Recommendation Based on the explanations above, the SNMPv3 Working Group recommends that RFCs 1157, 1441, 1901, 1909 and 1910 be reclassified as Historical documents.9. Security Considerations As this document is primarily a roadmap document, it introduces no new security considerations. The reader is referred to the relevant sections of each of the referenced documents for information about security considerations.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -