📄 prime.c
字号:
0xE4D3, 0xE4E9, 0xE4EB, 0xE4F5, 0xE507, 0xE521, 0xE525, 0xE537, 0xE53F, 0xE545, 0xE54B, 0xE557, 0xE567, 0xE56D, 0xE575, 0xE585, 0xE58B, 0xE593, 0xE5A3, 0xE5A5, 0xE5CF, 0xE609, 0xE611, 0xE615, 0xE61B, 0xE61D, 0xE621, 0xE629, 0xE639, 0xE63F, 0xE653, 0xE657, 0xE663, 0xE66F, 0xE675, 0xE681, 0xE683, 0xE68D, 0xE68F, 0xE695, 0xE6AB, 0xE6AD, 0xE6B7, 0xE6BD, 0xE6C5, 0xE6CB, 0xE6D5, 0xE6E3, 0xE6E9, 0xE6EF, 0xE6F3, 0xE705, 0xE70D, 0xE717, 0xE71F, 0xE72F, 0xE73D, 0xE747, 0xE749, 0xE753, 0xE755, 0xE761, 0xE767, 0xE76B, 0xE77F, 0xE789, 0xE791, 0xE7C5, 0xE7CD, 0xE7D7, 0xE7DD, 0xE7DF, 0xE7E9, 0xE7F1, 0xE7FB, 0xE801, 0xE807, 0xE80F, 0xE819, 0xE81B, 0xE831, 0xE833, 0xE837, 0xE83D, 0xE84B, 0xE84F, 0xE851, 0xE869, 0xE875, 0xE879, 0xE893, 0xE8A5, 0xE8A9, 0xE8AF, 0xE8BD, 0xE8DB, 0xE8E1, 0xE8E5, 0xE8EB, 0xE8ED, 0xE903, 0xE90B, 0xE90F, 0xE915, 0xE917, 0xE92D, 0xE933, 0xE93B, 0xE94B, 0xE951, 0xE95F, 0xE963, 0xE969, 0xE97B, 0xE983, 0xE98F, 0xE995, 0xE9A1, 0xE9B9, 0xE9D7, 0xE9E7, 0xE9EF, 0xEA11, 0xEA19, 0xEA2F, 0xEA35, 0xEA43, 0xEA4D, 0xEA5F, 0xEA6D, 0xEA71, 0xEA7D, 0xEA85, 0xEA89, 0xEAAD, 0xEAB3, 0xEAB9, 0xEABB, 0xEAC5, 0xEAC7, 0xEACB, 0xEADF, 0xEAE5, 0xEAEB, 0xEAF5, 0xEB01, 0xEB07, 0xEB09, 0xEB31, 0xEB39, 0xEB3F, 0xEB5B, 0xEB61, 0xEB63, 0xEB6F, 0xEB81, 0xEB85, 0xEB9D, 0xEBAB, 0xEBB1, 0xEBB7, 0xEBC1, 0xEBD5, 0xEBDF, 0xEBED, 0xEBFD, 0xEC0B, 0xEC1B, 0xEC21, 0xEC29, 0xEC4D, 0xEC51, 0xEC5D, 0xEC69, 0xEC6F, 0xEC7B, 0xECAD, 0xECB9, 0xECBF, 0xECC3, 0xECC9, 0xECCF, 0xECD7, 0xECDD, 0xECE7, 0xECE9, 0xECF3, 0xECF5, 0xED07, 0xED11, 0xED1F, 0xED2F, 0xED37, 0xED3D, 0xED41, 0xED55, 0xED59, 0xED5B, 0xED65, 0xED6B, 0xED79, 0xED8B, 0xED95, 0xEDBB, 0xEDC5, 0xEDD7, 0xEDD9, 0xEDE3, 0xEDE5, 0xEDF1, 0xEDF5, 0xEDF7, 0xEDFB, 0xEE09, 0xEE0F, 0xEE19, 0xEE21, 0xEE49, 0xEE4F, 0xEE63, 0xEE67, 0xEE73, 0xEE7B, 0xEE81, 0xEEA3, 0xEEAB, 0xEEC1, 0xEEC9, 0xEED5, 0xEEDF, 0xEEE1, 0xEEF1, 0xEF1B, 0xEF27, 0xEF2F, 0xEF45, 0xEF4D, 0xEF63, 0xEF6B, 0xEF71, 0xEF93, 0xEF95, 0xEF9B, 0xEF9F, 0xEFAD, 0xEFB3, 0xEFC3, 0xEFC5, 0xEFDB, 0xEFE1, 0xEFE9, 0xF001, 0xF017, 0xF01D, 0xF01F, 0xF02B, 0xF02F, 0xF035, 0xF043, 0xF047, 0xF04F, 0xF067, 0xF06B, 0xF071, 0xF077, 0xF079, 0xF08F, 0xF0A3, 0xF0A9, 0xF0AD, 0xF0BB, 0xF0BF, 0xF0C5, 0xF0CB, 0xF0D3, 0xF0D9, 0xF0E3, 0xF0E9, 0xF0F1, 0xF0F7, 0xF107, 0xF115, 0xF11B, 0xF121, 0xF137, 0xF13D, 0xF155, 0xF175, 0xF17B, 0xF18D, 0xF193, 0xF1A5, 0xF1AF, 0xF1B7, 0xF1D5, 0xF1E7, 0xF1ED, 0xF1FD, 0xF209, 0xF20F, 0xF21B, 0xF21D, 0xF223, 0xF227, 0xF233, 0xF23B, 0xF241, 0xF257, 0xF25F, 0xF265, 0xF269, 0xF277, 0xF281, 0xF293, 0xF2A7, 0xF2B1, 0xF2B3, 0xF2B9, 0xF2BD, 0xF2BF, 0xF2DB, 0xF2ED, 0xF2EF, 0xF2F9, 0xF2FF, 0xF305, 0xF30B, 0xF319, 0xF341, 0xF359, 0xF35B, 0xF35F, 0xF367, 0xF373, 0xF377, 0xF38B, 0xF38F, 0xF3AF, 0xF3C1, 0xF3D1, 0xF3D7, 0xF3FB, 0xF403, 0xF409, 0xF40D, 0xF413, 0xF421, 0xF425, 0xF42B, 0xF445, 0xF44B, 0xF455, 0xF463, 0xF475, 0xF47F, 0xF485, 0xF48B, 0xF499, 0xF4A3, 0xF4A9, 0xF4AF, 0xF4BD, 0xF4C3, 0xF4DB, 0xF4DF, 0xF4ED, 0xF503, 0xF50B, 0xF517, 0xF521, 0xF529, 0xF535, 0xF547, 0xF551, 0xF563, 0xF56B, 0xF583, 0xF58D, 0xF595, 0xF599, 0xF5B1, 0xF5B7, 0xF5C9, 0xF5CF, 0xF5D1, 0xF5DB, 0xF5F9, 0xF5FB, 0xF605, 0xF607, 0xF60B, 0xF60D, 0xF635, 0xF637, 0xF653, 0xF65B, 0xF661, 0xF667, 0xF679, 0xF67F, 0xF689, 0xF697, 0xF69B, 0xF6AD, 0xF6CB, 0xF6DD, 0xF6DF, 0xF6EB, 0xF709, 0xF70F, 0xF72D, 0xF731, 0xF743, 0xF74F, 0xF751, 0xF755, 0xF763, 0xF769, 0xF773, 0xF779, 0xF781, 0xF787, 0xF791, 0xF79D, 0xF79F, 0xF7A5, 0xF7B1, 0xF7BB, 0xF7BD, 0xF7CF, 0xF7D3, 0xF7E7, 0xF7EB, 0xF7F1, 0xF7FF, 0xF805, 0xF80B, 0xF821, 0xF827, 0xF82D, 0xF835, 0xF847, 0xF859, 0xF863, 0xF865, 0xF86F, 0xF871, 0xF877, 0xF87B, 0xF881, 0xF88D, 0xF89F, 0xF8A1, 0xF8AB, 0xF8B3, 0xF8B7, 0xF8C9, 0xF8CB, 0xF8D1, 0xF8D7, 0xF8DD, 0xF8E7, 0xF8EF, 0xF8F9, 0xF8FF, 0xF911, 0xF91D, 0xF925, 0xF931, 0xF937, 0xF93B, 0xF941, 0xF94F, 0xF95F, 0xF961, 0xF96D, 0xF971, 0xF977, 0xF99D, 0xF9A3, 0xF9A9, 0xF9B9, 0xF9CD, 0xF9E9, 0xF9FD, 0xFA07, 0xFA0D, 0xFA13, 0xFA21, 0xFA25, 0xFA3F, 0xFA43, 0xFA51, 0xFA5B, 0xFA6D, 0xFA7B, 0xFA97, 0xFA99, 0xFA9D, 0xFAAB, 0xFABB, 0xFABD, 0xFAD9, 0xFADF, 0xFAE7, 0xFAED, 0xFB0F, 0xFB17, 0xFB1B, 0xFB2D, 0xFB2F, 0xFB3F, 0xFB47, 0xFB4D, 0xFB75, 0xFB7D, 0xFB8F, 0xFB93, 0xFBB1, 0xFBB7, 0xFBC3, 0xFBC5, 0xFBE3, 0xFBE9, 0xFBF3, 0xFC01, 0xFC29, 0xFC37, 0xFC41, 0xFC43, 0xFC4F, 0xFC59, 0xFC61, 0xFC65, 0xFC6D, 0xFC73, 0xFC79, 0xFC95, 0xFC97, 0xFC9B, 0xFCA7, 0xFCB5, 0xFCC5, 0xFCCD, 0xFCEB, 0xFCFB, 0xFD0D, 0xFD0F, 0xFD19, 0xFD2B, 0xFD31, 0xFD51, 0xFD55, 0xFD67, 0xFD6D, 0xFD6F, 0xFD7B, 0xFD85, 0xFD97, 0xFD99, 0xFD9F, 0xFDA9, 0xFDB7, 0xFDC9, 0xFDE5, 0xFDEB, 0xFDF3, 0xFE03, 0xFE05, 0xFE09, 0xFE1D, 0xFE27, 0xFE2F, 0xFE41, 0xFE4B, 0xFE4D, 0xFE57, 0xFE5F, 0xFE63, 0xFE69, 0xFE75, 0xFE7B, 0xFE8F, 0xFE93, 0xFE95, 0xFE9B, 0xFE9F, 0xFEB3, 0xFEBD, 0xFED7, 0xFEE9, 0xFEF3, 0xFEF5, 0xFF07, 0xFF0D, 0xFF1D, 0xFF2B, 0xFF2F, 0xFF49, 0xFF4D, 0xFF5B, 0xFF65, 0xFF71, 0xFF7F, 0xFF85, 0xFF8B, 0xFF8F, 0xFF9D, 0xFFA7, 0xFFA9, 0xFFC7, 0xFFD9, 0xFFEF, 0xFFF1 };#endif#define UPPER_LIMIT (sizeof(prime_tab) / sizeof(prime_tab[0]))/* figures out if a number is prime (MR test) */#ifdef CLEAN_STACKstatic int _is_prime(mp_int *N, int *result)#elseint is_prime(mp_int *N, int *result)#endif{ long x, s, j; int res; mp_int n1, a, y, r; mp_digit d; _ARGCHK(N != NULL); _ARGCHK(result != NULL); /* default to answer of no */ *result = 0; /* divisible by any of the first primes? */ for (x = 0; x < (long)UPPER_LIMIT; x++) { /* is N equal to a small prime? */ if (mp_cmp_d(N, prime_tab[x]) == 0) { *result = 1; return CRYPT_OK; } /* is N mod prime_tab[x] == 0, then its divisible by it */ if (mp_mod_d(N, prime_tab[x], &d) != MP_OKAY) { return CRYPT_MEM; } if (d == 0) { return CRYPT_OK; } } /* init variables */ if (mp_init_multi(&r, &n1, &a, &y, NULL) != MP_OKAY) { return CRYPT_MEM; } /* n1 = N - 1 */ if (mp_sub_d(N, 1, &n1) != MP_OKAY) { goto error; } /* r = N - 1 */ if (mp_copy(&n1, &r) != MP_OKAY) { goto error; } /* find s such that N = (2^s)r */ s = 0; while (mp_iseven(&r) && mp_cmp_d(&r, 0)) { ++s; if (mp_div_2(&r, &r) != MP_OKAY) { goto error; } } for (x = 0; x < 16; x++) { /* choose a */ mp_set(&a, prime_tab[x]); /* compute y = a^r mod n */ if (mp_exptmod(&a, &r, N, &y) != MP_OKAY) { goto error; } /* (y != 1) AND (y != N-1) */ if ((mp_cmp_d(&y, 1) != 0) && (mp_cmp(&y, &n1) != 0)) { /* while j <= s-1 and y != n-1 */ for (j = 1; (j <= (s-1)) && (mp_cmp(&y, &n1) != 0); j++) { /* y = y^2 mod N */ if (mp_sqrmod(&y, N, &y) != MP_OKAY) { goto error; } /* if y == 1 return false */ if (mp_cmp_d(&y, 1) == 0) { goto ok; } } /* if y != n-1 return false */ if (mp_cmp(&y, &n1) != 0) { goto ok; } } } *result = 1;ok: res = CRYPT_OK; goto done;error: res = CRYPT_MEM;done: mp_clear_multi(&a, &y, &n1, &r, NULL); return res;}#ifdef CLEAN_STACKint is_prime(mp_int *N, int *result){ int x; x = _is_prime(N, result); burn_stack(sizeof(long) * 3 + sizeof(int) + sizeof(mp_int) * 4 + sizeof(mp_digit)); return x;}#endifint rand_prime(mp_int *N, long len, prng_state *prng, int wprng){ unsigned char buf[260]; int errno, step, ormask, res; _ARGCHK(N != NULL); /* pass a negative size if you want a prime congruent to 3 mod 4 */ if (len < 0) { step = 4; ormask = 3; len = -len; } else { step = 2; ormask = 1; } /* allow sizes between 2 and 256 bytes for a prime size */ if (len < 2 || len > 256) { return CRYPT_INVALID_PRIME_SIZE; } /* valid PRNG? */ if ((errno = prng_is_valid(wprng)) != CRYPT_OK) { return errno; } /* read the prng */ if (prng_descriptor[wprng].read(buf+2, len, prng) != (unsigned long)len) { return CRYPT_ERROR_READPRNG; } /* set sign byte to zero */ buf[0] = 0; /* Set the top byte to 0x01 which makes the number a len*8 bit number */ buf[1] = 0x01; /* set the LSB to the desired settings * (1 for any prime, 3 for primes congruent to 3 mod 4) */ buf[len+1] |= ormask; /* read the number in */ if (mp_read_raw(N, buf, 2+len) != MP_OKAY) { return CRYPT_MEM; } /* add the step size to it while N is not prime */ do { if (mp_add_d(N, (mp_digit)step, N) != MP_OKAY) { return CRYPT_MEM; } if ((errno = is_prime(N, &res)) != CRYPT_OK) { return errno; } } while (res == 0);#ifdef CLEAN_STACK zeromem(buf, sizeof(buf));#endif return CRYPT_OK;} #endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -