📄 ecc.c
字号:
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */#include "mycrypt.h"#ifdef MECCstatic const struct { int size; char *name, *prime, *B, *order, *Gx, *Gy;} sets[] = {#ifdef ECC160{ 20, "ECC-160", /* prime */ "1461501637330902918203684832716283019655932542983", /* B */ "1C9E7C2E5891CBE097BD46", /* order */ "1461501637330902918203686297565868358251373258181", /* Gx */ "2DCF462904B478D868A7FF3F2BF1FCD9", /* Gy */ "DFFAF2EE3848FA75FB967CEC7B9A399E085ACED8",},#endif#ifdef ECC192{ 24, "ECC-192", /* prime */ "6277101735386680763835789423207666416083908700390324961279", /* B */ "64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1", /* order */ "6277101735386680763835789423176059013767194773182842284081", /* Gx */ "188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012", /* Gy */ "07192b95ffc8da78631011ed6b24cdd573f977a11e794811"},#endif#ifdef ECC224{ 28, "ECC-224", /* prime */ "26959946667150639794667015087019630673637144422540572481103610249951", /* B */ "2051BA041508CED34B3", /* order */ "26959946667150639794667015087019637467111563745054605861463538557247", /* Gx */ "2DCF462904B478D868A7FF3F2BF1FCD9", /* Gy */ "CF337F320BC44A15C3EDB8C4258BB958E57A0CAFA73EB46E9C4BA9AE",},#endif#ifdef ECC256{ 32, "ECC-256", /* Prime */ "115792089210356248762697446949407573530086143415290314195533631308867097853951", /* B */ "5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", /* Order */ "115792089210356248762697446949407573529996955224135760342422259061068512044369", /* Gx */ "6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", /* Gy */ "4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"}, #endif#ifdef ECC384{ 48, "ECC-384", /* prime */ "394020061963944792122790401001436138050797392704654466679482934042457217714968" "70329047266088258938001861606973112319", /* B */ "b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed1" "9d2a85c8edd3ec2aef", /* Order */ "394020061963944792122790401001436138050797392704654466679469052796276593991132" "63569398956308152294913554433653942643", /* Gx and Gy */ "aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf5529" "6c3a545e3872760ab7", "3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e81" "9d7a431d7c90ea0e5f"},#endif#ifdef ECC521{ 65, "ECC-521", /* prime */ "686479766013060971498190079908139321726943530014330540939446345918554318339765" "6052122559640661454554977296311391480858037121987999716643812574028291115057151", /* B */ "051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7" "e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", /* Order */ "686479766013060971498190079908139321726943530014330540939446345918554318339765" "5394245057746333217197532963996371363321113864768612440380340372808892707005449", /* Gx and Gy */ "c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe7" "5928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", "11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef" "42640c550b9013fad0761353c7086a272c24088be94769fd16650",},#endif{ 0, NULL, NULL, NULL, NULL, NULL, NULL}};#if 0/* you plug in a prime and B value and it finds a pseudo-random base point */void ecc_find_base(void){ static char *prime = "26959946667150639794667015087019630673637144422540572481103610249951"; static char *order = "26959946667150639794667015087019637467111563745054605861463538557247"; static char *b = "9538957348957353489587"; mp_int pp, p, r, B, tmp1, tmp2, tx, ty, x, y; char buf[4096]; int i; mp_init_multi(&tx, &ty, &x, &y, &p, &pp, &r, &B, &tmp1, &tmp2, NULL); mp_read_radix(&p, prime, 10); mp_read_radix(&r, order, 10); mp_read_radix(&B, b, 10); /* get (p+1)/4 */ mp_add_d(&p, 1, &pp); mp_div_2(&pp, &pp); mp_div_2(&pp, &pp); buf[0] = 0; do { printf("."); fflush(stdout); /* make a random value of x */ for (i = 0; i < 16; i++) buf[i+1] = rand() & 255; mp_read_raw(&x, buf, 17); mp_copy(&x, &tx); /* now compute x^3 - 3x + b */ mp_expt_d(&x, 3, &tmp1); mp_mul_d(&x, 3, &tmp2); mp_sub(&tmp1, &tmp2, &tmp1); mp_add(&tmp1, &B, &tmp1); mp_mod(&tmp1, &p, &tmp1); /* now compute sqrt via x^((p+1)/4) */ mp_exptmod(&tmp1, &pp, &p, &tmp2); mp_copy(&tmp2, &ty); /* now square it */ mp_sqrmod(&tmp2, &p, &tmp2); /* tmp2 should equal tmp1 */ } while (mp_cmp(&tmp1, &tmp2)); /* now output values in way that libtomcrypt wants */ mp_todecimal(&p, buf); printf("\n\np==%s\n", buf); mp_tohex(&B, buf); printf("b==%s\n", buf); mp_todecimal(&r, buf); printf("r==%s\n", buf); mp_tohex(&tx, buf); printf("Gx==%s\n", buf); mp_tohex(&ty, buf); printf("Gy==%s\n", buf); mp_clear_multi(&tx, &ty, &x, &y, &p, &pp, &r, &B, &tmp1, &tmp2, NULL);}#endifstatic int is_valid_idx(int n){ int x; for (x = 0; sets[x].size; x++); if ((n < 0) || (n >= x)) { return 0; } return 1;}static ecc_point *new_point(void){ ecc_point *p; p = XMALLOC(sizeof(ecc_point)); if (p == NULL) { return NULL; } if (mp_init_multi(&p->x, &p->y, NULL) != MP_OKAY) { XFREE(p); return NULL; } return p;}static void del_point(ecc_point *p){ mp_clear_multi(&p->x, &p->y, NULL); XFREE(p);}/* double a point R = 2P, R can be P*/static int dbl_point(ecc_point *P, ecc_point *R, mp_int *modulus){ mp_int s, tmp, tmpx; int res; if (mp_init_multi(&s, &tmp, &tmpx, NULL) != MP_OKAY) { return CRYPT_MEM; } /* s = (3Xp^2 + a) / (2Yp) */ if (mp_mul_2(&P->y, &tmp) != MP_OKAY) { goto error; } /* tmp = 2*y */ if (mp_invmod(&tmp, modulus, &tmp) != MP_OKAY) { goto error; } /* tmp = 1/tmp mod modulus */ if (mp_sqr(&P->x, &s) != MP_OKAY) { goto error; } /* s = x^2 */ if (mp_mul_d(&s, 3, &s) != MP_OKAY) { goto error; } /* s = 3*(x^2) */ if (mp_sub_d(&s, 3, &s) != MP_OKAY) { goto error; } /* s = 3*(x^2) - 3 */ if (mp_mulmod(&s, &tmp, modulus, &s) != MP_OKAY) { goto error; } /* s = tmp * s mod modulus */ /* Xr = s^2 - 2Xp */ if (mp_sqr(&s, &tmpx) != MP_OKAY) { goto error; } /* tmpx = s^2 */ if (mp_sub(&tmpx, &P->x, &tmpx) != MP_OKAY) { goto error; } /* tmpx = tmpx - x */ if (mp_submod(&tmpx, &P->x, modulus, &tmpx) != MP_OKAY) { goto error; } /* tmpx = tmpx - x mod modulus */ /* Yr = -Yp + s(Xp - Xr) */ if (mp_sub(&P->x, &tmpx, &tmp) != MP_OKAY) { goto error; } /* tmp = x - tmpx */ if (mp_mul(&tmp, &s, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp * s */ if (mp_submod(&tmp, &P->y, modulus, &R->y) != MP_OKAY) { goto error; } /* y = tmp - y mod modulus */ if (mp_copy(&tmpx, &R->x) != MP_OKAY) { goto error; } /* x = tmpx */ res = CRYPT_OK; goto done;error: res = CRYPT_MEM;done: mp_clear_multi(&tmpx, &tmp, &s, NULL); return res;}/* add two different points over Z/pZ, R = P + Q, note R can equal either P or Q */static int add_point(ecc_point *P, ecc_point *Q, ecc_point *R, mp_int *modulus){ mp_int s, tmp, tmpx; int res; if (mp_init(&tmp) != MP_OKAY) { return CRYPT_MEM; } /* is P==Q or P==-Q? */ mp_neg(&Q->y, &tmp); mp_mod(&tmp, modulus, &tmp); if (!mp_cmp(&P->x, &Q->x)) if (!mp_cmp(&P->y, &Q->y) || !mp_cmp(&P->y, &tmp)) { mp_clear(&tmp); return dbl_point(P, R, modulus); } if (mp_init_multi(&tmpx, &s, NULL) != MP_OKAY) { mp_clear(&tmp); return CRYPT_MEM; } /* get s = (Yp - Yq)/(Xp-Xq) mod p */ if (mp_submod(&P->x, &Q->x, modulus, &tmp) != MP_OKAY) { goto error; } /* tmp = Px - Qx mod modulus */ if (mp_invmod(&tmp, modulus, &tmp) != MP_OKAY) { goto error; } /* tmp = 1/tmp mod modulus */ if (mp_sub(&P->y, &Q->y, &s) != MP_OKAY) { goto error; } /* s = Py - Qy mod modulus */ if (mp_mulmod(&s, &tmp, modulus, &s) != MP_OKAY) { goto error; } /* s = s * tmp mod modulus */ /* Xr = s^2 - Xp - Xq */ if (mp_sqrmod(&s, modulus, &tmp) != MP_OKAY) { goto error; } /* tmp = s^2 mod modulus */ if (mp_sub(&tmp, &P->x, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp - Px */ if (mp_sub(&tmp, &Q->x, &tmpx) != MP_OKAY) { goto error; } /* tmpx = tmp - Qx */ /* Yr = -Yp + s(Xp - Xr) */ if (mp_sub(&P->x, &tmpx, &tmp) != MP_OKAY) { goto error; } /* tmp = Px - tmpx */ if (mp_mul(&tmp, &s, &tmp) != MP_OKAY) { goto error; } /* tmp = tmp * s */ if (mp_submod(&tmp, &P->y, modulus, &R->y) != MP_OKAY) { goto error; } /* Ry = tmp - Py mod modulus */ if (mp_mod(&tmpx, modulus, &R->x) != MP_OKAY) { goto error; } /* Rx = tmpx mod modulus */ res = CRYPT_OK; goto done;error: res = CRYPT_MEM;done: mp_clear_multi(&s, &tmpx, &tmp, NULL); return res;}/* perform R = kG where k == integer and G == ecc_point */static int ecc_mulmod(mp_int *k, ecc_point *G, ecc_point *R, mp_int *modulus, int idx){ ecc_point *tG; int i, j, z, first, res; mp_digit d; unsigned char bits[768]; /* get bits of k */ for (z = i = 0; z < (int)USED(k); z++) { d = DIGIT(k, z); #define DO1 bits[i++] = d&1; d >>= 1;#define DO2 DO1 DO1#define DO4 DO2 DO2 DO4; DO4; DO4; DO4#undef DO4#undef DO2#undef DO1 } /* make a copy of G incase R==G */ tG = new_point(); if (tG == NULL) { return CRYPT_MEM; } /* tG = G */ if (mp_copy(&G->x, &tG->x) != MP_OKAY) { goto error; } if (mp_copy(&G->y, &tG->y) != MP_OKAY) { goto error; } /* set result to G, R = G */ if (mp_copy(&G->x, &R->x) != MP_OKAY) { goto error; } if (mp_copy(&G->y, &R->y) != MP_OKAY) { goto error; } first = 0; /* now do dbl+add through all the bits */ for (j = i-1; j >= 0; j--) { if (first) { if (dbl_point(R, R, modulus) != CRYPT_OK) { goto error; } } if (bits[j] == 1) { if (first) { if (add_point(R, tG, R, modulus) != CRYPT_OK) { goto error; } } first = 1; } } res = CRYPT_OK; goto done;error: res = CRYPT_MEM;done: del_point(tG);#ifdef CLEAN_STACK zeromem(bits, sizeof(bits)); #endif return res;}int ecc_test(void){ mp_int modulus, order; ecc_point *G, *GG; int i, res, primality; if (mp_init_multi(&modulus, &order, NULL) != MP_OKAY) { return CRYPT_MEM; } G = new_point(); if (G == NULL) { mp_clear_multi(&modulus, &order, NULL); return CRYPT_MEM; } GG = new_point(); if (GG == NULL) { mp_clear_multi(&modulus, &order, NULL); del_point(G); return CRYPT_MEM; } for (i = 0; sets[i].size; i++) { if (mp_read_radix(&modulus, (unsigned char *)sets[i].prime, 10) != MP_OKAY) { goto error; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -