⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ecc.c

📁 NIST推荐的素域上的椭圆曲线
💻 C
📖 第 1 页 / 共 2 页
字号:
/* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */#include "mycrypt.h"#ifdef MECCstatic const struct {   int size;   char *name, *prime, *B, *order, *Gx, *Gy;} sets[] = {#ifdef ECC160{   20,   "ECC-160",   /* prime */   "1461501637330902918203684832716283019655932542983",   /* B */   "1C9E7C2E5891CBE097BD46",   /* order */   "1461501637330902918203686297565868358251373258181",   /* Gx */   "2DCF462904B478D868A7FF3F2BF1FCD9",   /* Gy */   "DFFAF2EE3848FA75FB967CEC7B9A399E085ACED8",},#endif#ifdef ECC192{      24,   "ECC-192",   /* prime */   "6277101735386680763835789423207666416083908700390324961279",   /* B */   "64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1",   /* order */   "6277101735386680763835789423176059013767194773182842284081",   /* Gx */   "188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012",   /* Gy */   "07192b95ffc8da78631011ed6b24cdd573f977a11e794811"},#endif#ifdef ECC224{   28,   "ECC-224",   /* prime */   "26959946667150639794667015087019630673637144422540572481103610249951",   /* B */   "2051BA041508CED34B3",   /* order */   "26959946667150639794667015087019637467111563745054605861463538557247",   /* Gx */   "2DCF462904B478D868A7FF3F2BF1FCD9",    /* Gy */   "CF337F320BC44A15C3EDB8C4258BB958E57A0CAFA73EB46E9C4BA9AE",},#endif#ifdef ECC256{   32,   "ECC-256",   /* Prime */   "115792089210356248762697446949407573530086143415290314195533631308867097853951",   /* B */   "5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",   /* Order */   "115792089210356248762697446949407573529996955224135760342422259061068512044369",   /* Gx */   "6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",   /* Gy */   "4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"}, #endif#ifdef ECC384{   48,   "ECC-384",   /* prime */   "394020061963944792122790401001436138050797392704654466679482934042457217714968"   "70329047266088258938001861606973112319",   /* B */   "b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed1"   "9d2a85c8edd3ec2aef",   /* Order */   "394020061963944792122790401001436138050797392704654466679469052796276593991132"   "63569398956308152294913554433653942643",   /* Gx and Gy */   "aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf5529"   "6c3a545e3872760ab7",   "3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e81"   "9d7a431d7c90ea0e5f"},#endif#ifdef ECC521{   65,   "ECC-521",   /* prime */    "686479766013060971498190079908139321726943530014330540939446345918554318339765"   "6052122559640661454554977296311391480858037121987999716643812574028291115057151",    /* B */   "051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7"   "e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",    /* Order */    "686479766013060971498190079908139321726943530014330540939446345918554318339765"   "5394245057746333217197532963996371363321113864768612440380340372808892707005449",   /* Gx and Gy */   "c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe7"   "5928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",   "11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef"   "42640c550b9013fad0761353c7086a272c24088be94769fd16650",},#endif{   0,   NULL, NULL, NULL, NULL, NULL, NULL}};#if 0/* you plug in a prime and B value and it finds a pseudo-random base point */void ecc_find_base(void){   static char *prime = "26959946667150639794667015087019630673637144422540572481103610249951";   static char *order = "26959946667150639794667015087019637467111563745054605861463538557247";   static char *b     = "9538957348957353489587";   mp_int pp, p, r, B, tmp1, tmp2, tx, ty, x, y;   char buf[4096];   int i;   mp_init_multi(&tx, &ty, &x, &y, &p, &pp, &r, &B, &tmp1, &tmp2, NULL);   mp_read_radix(&p, prime, 10);   mp_read_radix(&r, order, 10);   mp_read_radix(&B, b, 10);   /* get (p+1)/4 */   mp_add_d(&p, 1, &pp);   mp_div_2(&pp, &pp);   mp_div_2(&pp, &pp);   buf[0] = 0;   do {      printf("."); fflush(stdout);      /* make a random value of x */      for (i = 0; i < 16; i++) buf[i+1] = rand() & 255;      mp_read_raw(&x, buf, 17);      mp_copy(&x, &tx);      /* now compute x^3 - 3x + b */      mp_expt_d(&x, 3, &tmp1);      mp_mul_d(&x, 3, &tmp2);      mp_sub(&tmp1, &tmp2, &tmp1);      mp_add(&tmp1, &B, &tmp1);      mp_mod(&tmp1, &p, &tmp1);      /* now compute sqrt via x^((p+1)/4) */      mp_exptmod(&tmp1, &pp, &p, &tmp2);      mp_copy(&tmp2, &ty);      /* now square it */      mp_sqrmod(&tmp2, &p, &tmp2);      /* tmp2 should equal tmp1 */   } while (mp_cmp(&tmp1, &tmp2));    /* now output values in way that libtomcrypt wants */   mp_todecimal(&p, buf);   printf("\n\np==%s\n", buf);   mp_tohex(&B, buf);   printf("b==%s\n", buf);   mp_todecimal(&r, buf);   printf("r==%s\n", buf);   mp_tohex(&tx, buf);   printf("Gx==%s\n", buf);   mp_tohex(&ty, buf);   printf("Gy==%s\n", buf);   mp_clear_multi(&tx, &ty, &x, &y, &p, &pp, &r, &B, &tmp1, &tmp2, NULL);}#endifstatic int is_valid_idx(int n){   int x;   for (x = 0; sets[x].size; x++);   if ((n < 0) || (n >= x)) {      return 0;   }   return 1;}static ecc_point *new_point(void){   ecc_point *p;   p = XMALLOC(sizeof(ecc_point));   if (p == NULL) {      return NULL;   }   if (mp_init_multi(&p->x, &p->y, NULL) != MP_OKAY) {      XFREE(p);      return NULL;   }   return p;}static void del_point(ecc_point *p){   mp_clear_multi(&p->x, &p->y, NULL);   XFREE(p);}/* double a point R = 2P, R can be P*/static int dbl_point(ecc_point *P, ecc_point *R, mp_int *modulus){   mp_int s, tmp, tmpx;   int res;   if (mp_init_multi(&s, &tmp, &tmpx, NULL) != MP_OKAY) {       return CRYPT_MEM;   }   /* s = (3Xp^2 + a) / (2Yp) */   if (mp_mul_2(&P->y, &tmp) != MP_OKAY)                   { goto error; } /* tmp = 2*y */   if (mp_invmod(&tmp, modulus, &tmp) != MP_OKAY)          { goto error; } /* tmp = 1/tmp mod modulus */   if (mp_sqr(&P->x,  &s) != MP_OKAY)                      { goto error; } /* s = x^2  */   if (mp_mul_d(&s, 3, &s) != MP_OKAY)                     { goto error; } /* s = 3*(x^2) */   if (mp_sub_d(&s, 3, &s) != MP_OKAY)                     { goto error; } /* s = 3*(x^2) - 3 */   if (mp_mulmod(&s, &tmp, modulus, &s) != MP_OKAY)        { goto error; } /* s = tmp * s mod modulus */   /* Xr = s^2 - 2Xp */   if (mp_sqr(&s,  &tmpx) != MP_OKAY)                      { goto error; } /* tmpx = s^2  */   if (mp_sub(&tmpx, &P->x, &tmpx) != MP_OKAY)             { goto error; } /* tmpx = tmpx - x */   if (mp_submod(&tmpx, &P->x, modulus, &tmpx) != MP_OKAY) { goto error; } /* tmpx = tmpx - x mod modulus */   /* Yr = -Yp + s(Xp - Xr)  */   if (mp_sub(&P->x, &tmpx, &tmp) != MP_OKAY)              { goto error; } /* tmp = x - tmpx */   if (mp_mul(&tmp, &s, &tmp) != MP_OKAY)                  { goto error; } /* tmp = tmp * s */   if (mp_submod(&tmp, &P->y, modulus, &R->y) != MP_OKAY)  { goto error; } /* y = tmp - y mod modulus */   if (mp_copy(&tmpx, &R->x) != MP_OKAY)                   { goto error; } /* x = tmpx */   res = CRYPT_OK;   goto done;error:   res = CRYPT_MEM;done:   mp_clear_multi(&tmpx, &tmp, &s, NULL);   return res;}/* add two different points over Z/pZ, R = P + Q, note R can equal either P or Q */static int add_point(ecc_point *P, ecc_point *Q, ecc_point *R, mp_int *modulus){   mp_int s, tmp, tmpx;   int res;   if (mp_init(&tmp) != MP_OKAY) {       return CRYPT_MEM;   }   /* is P==Q or P==-Q? */   mp_neg(&Q->y, &tmp);   mp_mod(&tmp, modulus, &tmp);   if (!mp_cmp(&P->x, &Q->x))      if (!mp_cmp(&P->y, &Q->y) || !mp_cmp(&P->y, &tmp)) {         mp_clear(&tmp);         return dbl_point(P, R, modulus);      }   if (mp_init_multi(&tmpx, &s, NULL) != MP_OKAY) {       mp_clear(&tmp);      return CRYPT_MEM;   }   /* get s = (Yp - Yq)/(Xp-Xq) mod p */   if (mp_submod(&P->x, &Q->x, modulus, &tmp) != MP_OKAY)     { goto error; } /* tmp = Px - Qx mod modulus */   if (mp_invmod(&tmp, modulus, &tmp) != MP_OKAY)             { goto error; } /* tmp = 1/tmp mod modulus */   if (mp_sub(&P->y, &Q->y, &s) != MP_OKAY)                   { goto error; } /* s = Py - Qy mod modulus */   if (mp_mulmod(&s, &tmp, modulus, &s) != MP_OKAY)           { goto error; } /* s = s * tmp mod modulus */   /* Xr = s^2 - Xp - Xq */   if (mp_sqrmod(&s, modulus, &tmp) != MP_OKAY)               { goto error; } /* tmp = s^2 mod modulus */   if (mp_sub(&tmp, &P->x, &tmp) != MP_OKAY)                  { goto error; } /* tmp = tmp - Px */   if (mp_sub(&tmp, &Q->x, &tmpx) != MP_OKAY)                 { goto error; } /* tmpx = tmp - Qx */   /* Yr = -Yp + s(Xp - Xr) */   if (mp_sub(&P->x, &tmpx, &tmp) != MP_OKAY)                 { goto error; } /* tmp = Px - tmpx */   if (mp_mul(&tmp, &s, &tmp) != MP_OKAY)                     { goto error; } /* tmp = tmp * s */   if (mp_submod(&tmp, &P->y, modulus, &R->y) != MP_OKAY)     { goto error; } /* Ry = tmp - Py mod modulus */   if (mp_mod(&tmpx, modulus, &R->x) != MP_OKAY)              { goto error; } /* Rx = tmpx mod modulus */   res = CRYPT_OK;   goto done;error:   res = CRYPT_MEM;done:   mp_clear_multi(&s, &tmpx, &tmp, NULL);   return res;}/* perform R = kG where k == integer and G == ecc_point */static int ecc_mulmod(mp_int *k, ecc_point *G, ecc_point *R, mp_int *modulus, int idx){   ecc_point *tG;   int i, j, z, first, res;   mp_digit d;   unsigned char bits[768];      /* get bits of k */   for (z = i = 0; z < (int)USED(k); z++) {       d = DIGIT(k, z);       #define DO1 bits[i++] = d&1; d >>= 1;#define DO2 DO1 DO1#define DO4 DO2 DO2       DO4; DO4; DO4; DO4#undef DO4#undef DO2#undef DO1   }   /* make a copy of G incase R==G */   tG = new_point();   if (tG == NULL) {       return CRYPT_MEM;   }   /* tG = G */   if (mp_copy(&G->x, &tG->x) != MP_OKAY)     { goto error; }   if (mp_copy(&G->y, &tG->y) != MP_OKAY)     { goto error; }   /* set result to G, R = G */   if (mp_copy(&G->x, &R->x) != MP_OKAY)      { goto error; }   if (mp_copy(&G->y, &R->y) != MP_OKAY)      { goto error; }   first = 0;   /* now do dbl+add through all the bits */   for (j = i-1; j >= 0; j--) {       if (first) {           if (dbl_point(R, R, modulus) != CRYPT_OK)       { goto error; }       }       if (bits[j] == 1) {          if (first) {             if (add_point(R, tG, R, modulus) != CRYPT_OK) { goto error; }          }          first = 1;       }   }   res = CRYPT_OK;    goto done;error:   res = CRYPT_MEM;done:   del_point(tG);#ifdef CLEAN_STACK   zeromem(bits, sizeof(bits)); #endif   return res;}int ecc_test(void){   mp_int     modulus, order;   ecc_point  *G, *GG;   int i, res, primality;   if (mp_init_multi(&modulus, &order, NULL) != MP_OKAY) {       return CRYPT_MEM;   }   G   = new_point();   if (G == NULL) {       mp_clear_multi(&modulus, &order, NULL);      return CRYPT_MEM;   }   GG  = new_point();   if (GG == NULL) {       mp_clear_multi(&modulus, &order, NULL);      del_point(G);      return CRYPT_MEM;   }   for (i = 0; sets[i].size; i++) {       if (mp_read_radix(&modulus, (unsigned char *)sets[i].prime, 10) != MP_OKAY)   { goto error; }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -