⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bindata2ipca.cc

📁 torch tracking code, it is a good code
💻 CC
字号:
const char *help = "\progname: bindata2ipca.cc\n\code2html: This program a bindata file and a PCA model, projects patterns into it and reconstructs the patterns in the input space.\n\version: Torch3 vision2.0, 2003-2005\n\(c) Sebastien Marcel (marcel@idiap.ch)\n";#include "DiskXFile.h"#include "ImageGray.h"#include "PCAMachine.h"#include "matrix.h"#include "MyMeanVarNorm.h"#include "CmdLine.h"using namespace Torch;int main(int argc, char *argv[]){	char *bindata_filename;	char *model_filename;	int n_input;	char *filename_out;	real variance;	bool verbose;	int verbose_level;	bool normalize;	CmdLine cmd;	cmd.setBOption("write log", false);		cmd.info(help);	cmd.addText("\nArguments:");	cmd.addSCmdArg("bindata filename", &bindata_filename, "bindata filename");	cmd.addSCmdArg("model filename", &model_filename, "PCA model filename");	cmd.addICmdArg("n_input", &n_input, "number of inputs");	cmd.addText("\nOptions:");	cmd.addSCmdOption("-o", &filename_out, "ipca.bindata", "bindata output file");	cmd.addRCmdOption("-variance", &variance, 0.95, "variance (-1 => 100\%)");	cmd.addBCmdOption("-verbose", &verbose, false, "verbose");	cmd.addICmdOption("-verbose_level", &verbose_level, 1, "level of verbose");	cmd.addBCmdOption("-normalize", &normalize, false, "normalize");	cmd.read(argc, argv);	if(verbose == false) verbose_level = 0;	//	PCAMachine *pca_machine = NULL;	pca_machine = new PCAMachine(n_input);	//	MyMeanVarNorm *mv_norm = NULL;	if(normalize)	{	   	if(verbose_level >= 1)			print("Loading PCA model and its normalisation: %s ...\n", model_filename);		mv_norm = new MyMeanVarNorm(n_input, 1);	   	pca_machine->load(model_filename, mv_norm);	}	else	{	   	if(verbose_level >= 1)			print("Loading PCA model: %s ...\n", model_filename);		DiskXFile *file = NULL;		file = new DiskXFile(model_filename, "r");		pca_machine->loadXFile(file);		delete file;	}		//	pca_machine->setIOption("verbose_level", 1);	pca_machine->setROption("variance", variance);	pca_machine->init();	int n_output = pca_machine->n_outputs;	//	Mat *E_inv = NULL;	E_inv = new Mat(n_input, n_input);	print("Copying eigenvectors ...\n");	   	Mat *eigenvectors = new Mat(n_input, n_input);	for(int i = 0 ; i < n_input ; i++)       		for(int j = 0 ; j < n_input ; j++)			eigenvectors->ptr[j][i] = pca_machine->eigenvectors[j][i];			print("Transpose the eigenvectors matrix ...\n");	mxTrMat(eigenvectors, E_inv);	delete eigenvectors;	//	int dimIn;	int n_patterns;			DiskXFile *pf = NULL;	pf = new DiskXFile(bindata_filename, "r");	pf->read(&n_patterns, sizeof(int), 1);	pf->read(&dimIn, sizeof(int), 1);	if(verbose_level >= 1)	{		print("n_inputs : %d\n", dimIn);		print("n_patterns : %d\n", n_patterns);  	}	if(n_input > dimIn)	{		error("Number of inputs specified (%d) bigger than into the file (%d)\n", n_input, dimIn);	   		delete pf;		return 0;	}	//	float *realinput = NULL;        Sequence *seq;	float *ipca = NULL;        realinput = new float [n_input];        seq = new Sequence(&realinput, 1, n_input);	        ipca = new float [n_input];	//	DiskXFile *pfOutput = NULL;	pfOutput = new DiskXFile(filename_out, "w");		//	if(verbose_level >= 1)		print("Projection bindata file into PCA space (%d -> %d) ...\n", n_input, n_output);	int P = n_patterns;	pfOutput->write(&P, sizeof(int), 1);	pfOutput->write(&dimIn, sizeof(int), 1);		real MSE = 0.0;	for(int p = 0 ; p < P ; p++)	{	   	//	  	for(int i = 0 ; i < n_input ; i++)			pf->read(&realinput[i], sizeof(float), 1);   	   	if(verbose_level >= 2)			print(" Seq =     [%2.3f %2.3f %2.3f ...]\n", realinput[0], realinput[1], realinput[2]);		if(normalize)			mv_norm->preProcessInputs(seq);		//		pca_machine->forward(seq);				   	if(verbose_level >= 2)			print(" Output =   [%2.3f %2.3f %2.3f ...]\n", pca_machine->outputs->frames[0][0], pca_machine->outputs->frames[0][1], pca_machine->outputs->frames[0][2]);		float *machine_output = pca_machine->outputs->frames[0];				for(int i = 0 ; i < n_input ; i++)		{			ipca[i] = 0.0;			for(int j = 0 ; j < n_output ; j++)				ipca[i] += E_inv->ptr[j][i] * machine_output[j];		}				for(int i = 0 ; i < n_input ; i++) 		{		   	ipca[i] += pca_machine->Xm[i];			if(ipca[i] < 0.0) ipca[i] = 0.0;			if(ipca[i] > 1.0) ipca[i] = 1.0;		}		//		float data;		float mse = 0;		for(int i = 0 ; i < n_input ; i++)		{		   	data = ipca[i];			real z = realinput[i] - data;			mse += z*z;						pfOutput->write(&data, sizeof(float), 1);   		}		mse /= (float) n_input;	   	if(verbose_level >= 1)			print(" mse = %g\n", mse);				MSE += mse;	}	MSE /= (real) P;	print("MSE %g %d %g\n", variance, n_output, MSE);	//	delete pf;	delete pfOutput;		//	delete seq;	delete [] realinput;	delete [] ipca;	if(normalize) delete mv_norm;	delete pca_machine;	delete E_inv;	  	return 0;}   

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -