📄 bindata2ipca.cc
字号:
const char *help = "\progname: bindata2ipca.cc\n\code2html: This program a bindata file and a PCA model, projects patterns into it and reconstructs the patterns in the input space.\n\version: Torch3 vision2.0, 2003-2005\n\(c) Sebastien Marcel (marcel@idiap.ch)\n";#include "DiskXFile.h"#include "ImageGray.h"#include "PCAMachine.h"#include "matrix.h"#include "MyMeanVarNorm.h"#include "CmdLine.h"using namespace Torch;int main(int argc, char *argv[]){ char *bindata_filename; char *model_filename; int n_input; char *filename_out; real variance; bool verbose; int verbose_level; bool normalize; CmdLine cmd; cmd.setBOption("write log", false); cmd.info(help); cmd.addText("\nArguments:"); cmd.addSCmdArg("bindata filename", &bindata_filename, "bindata filename"); cmd.addSCmdArg("model filename", &model_filename, "PCA model filename"); cmd.addICmdArg("n_input", &n_input, "number of inputs"); cmd.addText("\nOptions:"); cmd.addSCmdOption("-o", &filename_out, "ipca.bindata", "bindata output file"); cmd.addRCmdOption("-variance", &variance, 0.95, "variance (-1 => 100\%)"); cmd.addBCmdOption("-verbose", &verbose, false, "verbose"); cmd.addICmdOption("-verbose_level", &verbose_level, 1, "level of verbose"); cmd.addBCmdOption("-normalize", &normalize, false, "normalize"); cmd.read(argc, argv); if(verbose == false) verbose_level = 0; // PCAMachine *pca_machine = NULL; pca_machine = new PCAMachine(n_input); // MyMeanVarNorm *mv_norm = NULL; if(normalize) { if(verbose_level >= 1) print("Loading PCA model and its normalisation: %s ...\n", model_filename); mv_norm = new MyMeanVarNorm(n_input, 1); pca_machine->load(model_filename, mv_norm); } else { if(verbose_level >= 1) print("Loading PCA model: %s ...\n", model_filename); DiskXFile *file = NULL; file = new DiskXFile(model_filename, "r"); pca_machine->loadXFile(file); delete file; } // pca_machine->setIOption("verbose_level", 1); pca_machine->setROption("variance", variance); pca_machine->init(); int n_output = pca_machine->n_outputs; // Mat *E_inv = NULL; E_inv = new Mat(n_input, n_input); print("Copying eigenvectors ...\n"); Mat *eigenvectors = new Mat(n_input, n_input); for(int i = 0 ; i < n_input ; i++) for(int j = 0 ; j < n_input ; j++) eigenvectors->ptr[j][i] = pca_machine->eigenvectors[j][i]; print("Transpose the eigenvectors matrix ...\n"); mxTrMat(eigenvectors, E_inv); delete eigenvectors; // int dimIn; int n_patterns; DiskXFile *pf = NULL; pf = new DiskXFile(bindata_filename, "r"); pf->read(&n_patterns, sizeof(int), 1); pf->read(&dimIn, sizeof(int), 1); if(verbose_level >= 1) { print("n_inputs : %d\n", dimIn); print("n_patterns : %d\n", n_patterns); } if(n_input > dimIn) { error("Number of inputs specified (%d) bigger than into the file (%d)\n", n_input, dimIn); delete pf; return 0; } // float *realinput = NULL; Sequence *seq; float *ipca = NULL; realinput = new float [n_input]; seq = new Sequence(&realinput, 1, n_input); ipca = new float [n_input]; // DiskXFile *pfOutput = NULL; pfOutput = new DiskXFile(filename_out, "w"); // if(verbose_level >= 1) print("Projection bindata file into PCA space (%d -> %d) ...\n", n_input, n_output); int P = n_patterns; pfOutput->write(&P, sizeof(int), 1); pfOutput->write(&dimIn, sizeof(int), 1); real MSE = 0.0; for(int p = 0 ; p < P ; p++) { // for(int i = 0 ; i < n_input ; i++) pf->read(&realinput[i], sizeof(float), 1); if(verbose_level >= 2) print(" Seq = [%2.3f %2.3f %2.3f ...]\n", realinput[0], realinput[1], realinput[2]); if(normalize) mv_norm->preProcessInputs(seq); // pca_machine->forward(seq); if(verbose_level >= 2) print(" Output = [%2.3f %2.3f %2.3f ...]\n", pca_machine->outputs->frames[0][0], pca_machine->outputs->frames[0][1], pca_machine->outputs->frames[0][2]); float *machine_output = pca_machine->outputs->frames[0]; for(int i = 0 ; i < n_input ; i++) { ipca[i] = 0.0; for(int j = 0 ; j < n_output ; j++) ipca[i] += E_inv->ptr[j][i] * machine_output[j]; } for(int i = 0 ; i < n_input ; i++) { ipca[i] += pca_machine->Xm[i]; if(ipca[i] < 0.0) ipca[i] = 0.0; if(ipca[i] > 1.0) ipca[i] = 1.0; } // float data; float mse = 0; for(int i = 0 ; i < n_input ; i++) { data = ipca[i]; real z = realinput[i] - data; mse += z*z; pfOutput->write(&data, sizeof(float), 1); } mse /= (float) n_input; if(verbose_level >= 1) print(" mse = %g\n", mse); MSE += mse; } MSE /= (real) P; print("MSE %g %d %g\n", variance, n_output, MSE); // delete pf; delete pfOutput; // delete seq; delete [] realinput; delete [] ipca; if(normalize) delete mv_norm; delete pca_machine; delete E_inv; return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -