⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainpca.cc

📁 torch tracking code, it is a good code
💻 CC
字号:
const char *help = "\progname: trainPCA.cc\n\code2html: This program computes PCA projection sub-space.\n\version: Torch3 vision2.0, 2003-2005\n\(c) Sebastien Marcel (marcel@idiap.ch)\n";#include "FileBinDataSet.h"#include "DiskBinDataSet.h"#include "PCATrainer.h"#include "MeanVarNorm.h"#include "HistoEqualSmoothImagePreProcessing.h"#include "FileListCmdOption.h"#include "CmdLine.h"using namespace Torch;			int main(int argc, char **argv){  	int n_inputs;  	int offset_window;  	int n_inputs_window;  	char *model_file;	bool verbose;	int verbose_level;	bool normalize;	bool forward;	bool saveCovar;	bool use_disk;	bool image_normalize;	int width, height;  	Allocator *allocator = new Allocator;  	DiskXFile::setLittleEndianMode();	  	//=================== The command-line ==========================	FileListCmdOption filelist("file name", "the list files or one data file");        filelist.isArgument(true);  	// Construct the command line  	CmdLine cmd;	cmd.setBOption("write log", false);	  	// Put the help line at the beginning  	cmd.info(help);  	cmd.addText("\nArguments:");  	cmd.addCmdOption(&filelist);  	cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data", true);  	cmd.addText("\nOptions:");  	cmd.addICmdOption("-offset_window", &offset_window, 0, "offset window", true);  	cmd.addICmdOption("-n_inputs_window", &n_inputs_window, -1, "input dimension of the window", true);  	cmd.addBCmdOption("-saveCovar", &saveCovar, false, "save the covariance matrix", true);  	cmd.addBCmdOption("-normalize", &normalize, false, "normalization", true);  	cmd.addBCmdOption("-verbose", &verbose, false, "verbose", true);  	cmd.addICmdOption("-verbose_level", &verbose_level, 0, "verbose level", true);  	cmd.addBCmdOption("-forward", &forward, false, "project data into PCA sub-space", true);  	cmd.addSCmdOption("-save", &model_file, "", "model file", true);	cmd.addBCmdOption("-use_disk", &use_disk, false, "use disk");	cmd.addBCmdOption("-imagenorm", &image_normalize, false, "considers the input pattern as an image and performs a photometric normalization");	cmd.addICmdOption("-width", &width, -1, "width");	cmd.addICmdOption("-height", &height, -1, "height");  	// Read the command line  	cmd.read(argc, argv);	if(n_inputs_window == -1) n_inputs_window = n_inputs;	if(image_normalize)	{		print("Perform photometric normalization ...\n");		print("The input pattern is an %dx%d image.\n", width, height);	}	//	if(verbose)	{		print(" + n_filenames = %d\n", filelist.n_files);		for(int i = 0 ; i < filelist.n_files ; i++)			print("   filename[%d] = %s\n", i, filelist.file_names[i]);	}	//  	// The PCA Machine	PCAMachine *pca_machine = NULL;	pca_machine = new(allocator) PCAMachine(n_inputs_window);	pca_machine->setIOption("verbose_level", verbose_level);	//	// The PCA Trainer	Trainer *pca_trainer = NULL;	pca_trainer = new(allocator) PCATrainer(pca_machine);	pca_trainer->setBOption("saveCovar", saveCovar);	pca_trainer->setIOption("verbose_level", verbose_level);		//	// Load all the data in the same dataset	DataSet *bindata = NULL;		if(use_disk)	{  		DiskBinDataSet *bindata_ = new(allocator) DiskBinDataSet(filelist.file_names, filelist.n_files, n_inputs, -1);	  	bindata_->info(false);		bindata = bindata_;	}	else	{    		//FileBinDataSet *bindata = new(allocator) FileBinDataSet(filelist.file_names, filelist.n_files, 0.0, n_inputs);	    	//FileBinDataSet *bindata = new(allocator) FileBinDataSet(filelist.file_names, filelist.n_files, n_inputs, offset_window, n_inputs_window);	    	FileBinDataSet *bindata_ = new(allocator) FileBinDataSet(filelist.file_names, filelist.n_files, n_inputs, offset_window, n_inputs_window);		bindata_->info(false);			bindata = bindata_;	}		//	if(image_normalize)	{		print("Pre-processing image %dx%d ...\n", width, height);		PreProcessing *preprocess = new(allocator) HistoEqualSmoothImagePreProcessing(width, height);		bindata->preProcess(preprocess);	}		//	MeanVarNorm *mv_norm = NULL;	if(normalize)	{	   	print("Normalization ...\n");		mv_norm = new(allocator) MeanVarNorm(bindata);		bindata->preProcess(mv_norm);	}	//	// Computes PCA	pca_trainer->train(bindata, NULL);	//	// Project data into PCA sub-space	real *realinput = NULL;        Sequence *seq = NULL;	if(forward)	{        	realinput = new real [n_inputs_window];        	seq = new Sequence(&realinput, 1, n_inputs_window);			//		pca_machine->setROption("variance", 0.95);		pca_machine->init();			for(int i=0; i< bindata->n_examples; i++)		{			if(verbose) 	   			print("[%d]:\n", i);			//			bindata->setExample(i);					if(verbose) 				print(" Input =   [%2.3f %2.3f %2.3f ...]\n", bindata->inputs->frames[0][0], bindata->inputs->frames[0][1], bindata->inputs->frames[0][2]);			//			bindata->inputs->copyTo(realinput);			if(verbose) 				print(" Seq =     [%2.3f %2.3f %2.3f ...]\n", realinput[0], realinput[1], realinput[2]);			//			pca_machine->forward(seq);						if(verbose) 				print(" Output =   [%2.3f %2.3f %2.3f ...]\n", pca_machine->outputs->frames[0][0], pca_machine->outputs->frames[0][1], pca_machine->outputs->frames[0][2]);		}	}	//	// Save the model	if(strcmp(model_file, "") != 0)	{	   	if(normalize) 		{	   		print("Saving PCA model and its normalisation...\n");		   	pca_machine->save(model_file, mv_norm);		}		else		{	   		print("Saving PCA model ...\n");			DiskXFile *file = NULL;			file = new DiskXFile(model_file, "w");				pca_machine->saveXFile(file);				delete file;		}	}	//	// Free memory	if(forward)	{		delete [] realinput;		delete seq;	}  	delete allocator;  	return(0);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -