📄 trainpca.cc
字号:
const char *help = "\progname: trainPCA.cc\n\code2html: This program computes PCA projection sub-space.\n\version: Torch3 vision2.0, 2003-2005\n\(c) Sebastien Marcel (marcel@idiap.ch)\n";#include "FileBinDataSet.h"#include "DiskBinDataSet.h"#include "PCATrainer.h"#include "MeanVarNorm.h"#include "HistoEqualSmoothImagePreProcessing.h"#include "FileListCmdOption.h"#include "CmdLine.h"using namespace Torch; int main(int argc, char **argv){ int n_inputs; int offset_window; int n_inputs_window; char *model_file; bool verbose; int verbose_level; bool normalize; bool forward; bool saveCovar; bool use_disk; bool image_normalize; int width, height; Allocator *allocator = new Allocator; DiskXFile::setLittleEndianMode(); //=================== The command-line ========================== FileListCmdOption filelist("file name", "the list files or one data file"); filelist.isArgument(true); // Construct the command line CmdLine cmd; cmd.setBOption("write log", false); // Put the help line at the beginning cmd.info(help); cmd.addText("\nArguments:"); cmd.addCmdOption(&filelist); cmd.addICmdArg("n_inputs", &n_inputs, "input dimension of the data", true); cmd.addText("\nOptions:"); cmd.addICmdOption("-offset_window", &offset_window, 0, "offset window", true); cmd.addICmdOption("-n_inputs_window", &n_inputs_window, -1, "input dimension of the window", true); cmd.addBCmdOption("-saveCovar", &saveCovar, false, "save the covariance matrix", true); cmd.addBCmdOption("-normalize", &normalize, false, "normalization", true); cmd.addBCmdOption("-verbose", &verbose, false, "verbose", true); cmd.addICmdOption("-verbose_level", &verbose_level, 0, "verbose level", true); cmd.addBCmdOption("-forward", &forward, false, "project data into PCA sub-space", true); cmd.addSCmdOption("-save", &model_file, "", "model file", true); cmd.addBCmdOption("-use_disk", &use_disk, false, "use disk"); cmd.addBCmdOption("-imagenorm", &image_normalize, false, "considers the input pattern as an image and performs a photometric normalization"); cmd.addICmdOption("-width", &width, -1, "width"); cmd.addICmdOption("-height", &height, -1, "height"); // Read the command line cmd.read(argc, argv); if(n_inputs_window == -1) n_inputs_window = n_inputs; if(image_normalize) { print("Perform photometric normalization ...\n"); print("The input pattern is an %dx%d image.\n", width, height); } // if(verbose) { print(" + n_filenames = %d\n", filelist.n_files); for(int i = 0 ; i < filelist.n_files ; i++) print(" filename[%d] = %s\n", i, filelist.file_names[i]); } // // The PCA Machine PCAMachine *pca_machine = NULL; pca_machine = new(allocator) PCAMachine(n_inputs_window); pca_machine->setIOption("verbose_level", verbose_level); // // The PCA Trainer Trainer *pca_trainer = NULL; pca_trainer = new(allocator) PCATrainer(pca_machine); pca_trainer->setBOption("saveCovar", saveCovar); pca_trainer->setIOption("verbose_level", verbose_level); // // Load all the data in the same dataset DataSet *bindata = NULL; if(use_disk) { DiskBinDataSet *bindata_ = new(allocator) DiskBinDataSet(filelist.file_names, filelist.n_files, n_inputs, -1); bindata_->info(false); bindata = bindata_; } else { //FileBinDataSet *bindata = new(allocator) FileBinDataSet(filelist.file_names, filelist.n_files, 0.0, n_inputs); //FileBinDataSet *bindata = new(allocator) FileBinDataSet(filelist.file_names, filelist.n_files, n_inputs, offset_window, n_inputs_window); FileBinDataSet *bindata_ = new(allocator) FileBinDataSet(filelist.file_names, filelist.n_files, n_inputs, offset_window, n_inputs_window); bindata_->info(false); bindata = bindata_; } // if(image_normalize) { print("Pre-processing image %dx%d ...\n", width, height); PreProcessing *preprocess = new(allocator) HistoEqualSmoothImagePreProcessing(width, height); bindata->preProcess(preprocess); } // MeanVarNorm *mv_norm = NULL; if(normalize) { print("Normalization ...\n"); mv_norm = new(allocator) MeanVarNorm(bindata); bindata->preProcess(mv_norm); } // // Computes PCA pca_trainer->train(bindata, NULL); // // Project data into PCA sub-space real *realinput = NULL; Sequence *seq = NULL; if(forward) { realinput = new real [n_inputs_window]; seq = new Sequence(&realinput, 1, n_inputs_window); // pca_machine->setROption("variance", 0.95); pca_machine->init(); for(int i=0; i< bindata->n_examples; i++) { if(verbose) print("[%d]:\n", i); // bindata->setExample(i); if(verbose) print(" Input = [%2.3f %2.3f %2.3f ...]\n", bindata->inputs->frames[0][0], bindata->inputs->frames[0][1], bindata->inputs->frames[0][2]); // bindata->inputs->copyTo(realinput); if(verbose) print(" Seq = [%2.3f %2.3f %2.3f ...]\n", realinput[0], realinput[1], realinput[2]); // pca_machine->forward(seq); if(verbose) print(" Output = [%2.3f %2.3f %2.3f ...]\n", pca_machine->outputs->frames[0][0], pca_machine->outputs->frames[0][1], pca_machine->outputs->frames[0][2]); } } // // Save the model if(strcmp(model_file, "") != 0) { if(normalize) { print("Saving PCA model and its normalisation...\n"); pca_machine->save(model_file, mv_norm); } else { print("Saving PCA model ...\n"); DiskXFile *file = NULL; file = new DiskXFile(model_file, "w"); pca_machine->saveXFile(file); delete file; } } // // Free memory if(forward) { delete [] realinput; delete seq; } delete allocator; return(0);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -