📄 rfc2045.txt
字号:
mechanism, binary bodies must be labelled as such using this
mechanism.
NOTE: The five values defined for the Content-Transfer-Encoding field
imply nothing about the media type other than the algorithm by which
it was encoded or the transport system requirements if unencoded.
6.3. New Content-Transfer-Encodings
Implementors may, if necessary, define private Content-Transfer-
Encoding values, but must use an x-token, which is a name prefixed by
"X-", to indicate its non-standard status, e.g., "Content-Transfer-
Encoding: x-my-new-encoding". Additional standardized Content-
Transfer-Encoding values must be specified by a standards-track RFC.
The requirements such specifications must meet are given in RFC 2048.
As such, all content-transfer-encoding namespace except that
beginning with "X-" is explicitly reserved to the IETF for future
use.
Unlike media types and subtypes, the creation of new Content-
Transfer-Encoding values is STRONGLY discouraged, as it seems likely
to hinder interoperability with little potential benefit
6.4. Interpretation and Use
If a Content-Transfer-Encoding header field appears as part of a
message header, it applies to the entire body of that message. If a
Content-Transfer-Encoding header field appears as part of an entity's
headers, it applies only to the body of that entity. If an entity is
of type "multipart" the Content-Transfer-Encoding is not permitted to
have any value other than "7bit", "8bit" or "binary". Even more
severe restrictions apply to some subtypes of the "message" type.
Freed & Borenstein Standards Track [Page 16]
RFC 2045 Internet Message Bodies November 1996
It should be noted that most media types are defined in terms of
octets rather than bits, so that the mechanisms described here are
mechanisms for encoding arbitrary octet streams, not bit streams. If
a bit stream is to be encoded via one of these mechanisms, it must
first be converted to an 8bit byte stream using the network standard
bit order ("big-endian"), in which the earlier bits in a stream
become the higher-order bits in a 8bit byte. A bit stream not ending
at an 8bit boundary must be padded with zeroes. RFC 2046 provides a
mechanism for noting the addition of such padding in the case of the
application/octet-stream media type, which has a "padding" parameter.
The encoding mechanisms defined here explicitly encode all data in
US-ASCII. Thus, for example, suppose an entity has header fields
such as:
Content-Type: text/plain; charset=ISO-8859-1
Content-transfer-encoding: base64
This must be interpreted to mean that the body is a base64 US-ASCII
encoding of data that was originally in ISO-8859-1, and will be in
that character set again after decoding.
Certain Content-Transfer-Encoding values may only be used on certain
media types. In particular, it is EXPRESSLY FORBIDDEN to use any
encodings other than "7bit", "8bit", or "binary" with any composite
media type, i.e. one that recursively includes other Content-Type
fields. Currently the only composite media types are "multipart" and
"message". All encodings that are desired for bodies of type
multipart or message must be done at the innermost level, by encoding
the actual body that needs to be encoded.
It should also be noted that, by definition, if a composite entity
has a transfer-encoding value such as "7bit", but one of the enclosed
entities has a less restrictive value such as "8bit", then either the
outer "7bit" labelling is in error, because 8bit data are included,
or the inner "8bit" labelling placed an unnecessarily high demand on
the transport system because the actual included data were actually
7bit-safe.
NOTE ON ENCODING RESTRICTIONS: Though the prohibition against using
content-transfer-encodings on composite body data may seem overly
restrictive, it is necessary to prevent nested encodings, in which
data are passed through an encoding algorithm multiple times, and
must be decoded multiple times in order to be properly viewed.
Nested encodings add considerable complexity to user agents: Aside
from the obvious efficiency problems with such multiple encodings,
they can obscure the basic structure of a message. In particular,
they can imply that several decoding operations are necessary simply
Freed & Borenstein Standards Track [Page 17]
RFC 2045 Internet Message Bodies November 1996
to find out what types of bodies a message contains. Banning nested
encodings may complicate the job of certain mail gateways, but this
seems less of a problem than the effect of nested encodings on user
agents.
Any entity with an unrecognized Content-Transfer-Encoding must be
treated as if it has a Content-Type of "application/octet-stream",
regardless of what the Content-Type header field actually says.
NOTE ON THE RELATIONSHIP BETWEEN CONTENT-TYPE AND CONTENT-TRANSFER-
ENCODING: It may seem that the Content-Transfer-Encoding could be
inferred from the characteristics of the media that is to be encoded,
or, at the very least, that certain Content-Transfer-Encodings could
be mandated for use with specific media types. There are several
reasons why this is not the case. First, given the varying types of
transports used for mail, some encodings may be appropriate for some
combinations of media types and transports but not for others. (For
example, in an 8bit transport, no encoding would be required for text
in certain character sets, while such encodings are clearly required
for 7bit SMTP.)
Second, certain media types may require different types of transfer
encoding under different circumstances. For example, many PostScript
bodies might consist entirely of short lines of 7bit data and hence
require no encoding at all. Other PostScript bodies (especially
those using Level 2 PostScript's binary encoding mechanism) may only
be reasonably represented using a binary transport encoding.
Finally, since the Content-Type field is intended to be an open-ended
specification mechanism, strict specification of an association
between media types and encodings effectively couples the
specification of an application protocol with a specific lower-level
transport. This is not desirable since the developers of a media
type should not have to be aware of all the transports in use and
what their limitations are.
6.5. Translating Encodings
The quoted-printable and base64 encodings are designed so that
conversion between them is possible. The only issue that arises in
such a conversion is the handling of hard line breaks in quoted-
printable encoding output. When converting from quoted-printable to
base64 a hard line break in the quoted-printable form represents a
CRLF sequence in the canonical form of the data. It must therefore be
converted to a corresponding encoded CRLF in the base64 form of the
data. Similarly, a CRLF sequence in the canonical form of the data
obtained after base64 decoding must be converted to a quoted-
printable hard line break, but ONLY when converting text data.
Freed & Borenstein Standards Track [Page 18]
RFC 2045 Internet Message Bodies November 1996
6.6. Canonical Encoding Model
There was some confusion, in the previous versions of this RFC,
regarding the model for when email data was to be converted to
canonical form and encoded, and in particular how this process would
affect the treatment of CRLFs, given that the representation of
newlines varies greatly from system to system, and the relationship
between content-transfer-encodings and character sets. A canonical
model for encoding is presented in RFC 2049 for this reason.
6.7. Quoted-Printable Content-Transfer-Encoding
The Quoted-Printable encoding is intended to represent data that
largely consists of octets that correspond to printable characters in
the US-ASCII character set. It encodes the data in such a way that
the resulting octets are unlikely to be modified by mail transport.
If the data being encoded are mostly US-ASCII text, the encoded form
of the data remains largely recognizable by humans. A body which is
entirely US-ASCII may also be encoded in Quoted-Printable to ensure
the integrity of the data should the message pass through a
character-translating, and/or line-wrapping gateway.
In this encoding, octets are to be represented as determined by the
following rules:
(1) (General 8bit representation) Any octet, except a CR or
LF that is part of a CRLF line break of the canonical
(standard) form of the data being encoded, may be
represented by an "=" followed by a two digit
hexadecimal representation of the octet's value. The
digits of the hexadecimal alphabet, for this purpose,
are "0123456789ABCDEF". Uppercase letters must be
used; lowercase letters are not allowed. Thus, for
example, the decimal value 12 (US-ASCII form feed) can
be represented by "=0C", and the decimal value 61 (US-
ASCII EQUAL SIGN) can be represented by "=3D". This
rule must be followed except when the following rules
allow an alternative encoding.
(2) (Literal representation) Octets with decimal values of
33 through 60 inclusive, and 62 through 126, inclusive,
MAY be represented as the US-ASCII characters which
correspond to those octets (EXCLAMATION POINT through
LESS THAN, and GREATER THAN through TILDE,
respectively).
(3) (White Space) Octets with values of 9 and 32 MAY be
represented as US-ASCII TAB (HT) and SPACE characters,
Freed & Borenstein Standards Track [Page 19]
RFC 2045 Internet Message Bodies November 1996
respectively, but MUST NOT be so represented at the end
of an encoded line. Any TAB (HT) or SPACE characters
on an encoded line MUST thus be followed on that line
by a printable character. In particular, an "=" at the
end of an encoded line, indicating a soft line break
(see rule #5) may follow one or more TAB (HT) or SPACE
characters. It follows that an octet with decimal
value 9 or 32 appearing at the end of an encoded line
must be represented according to Rule #1. This rule is
necessary because some MTAs (Message Transport Agents,
programs which transport messages from one user to
another, or perform a portion of such transfers) are
known to pad lines of text with SPACEs, and others are
known to remove "white space" characters from the end
of a line. Therefore, when decoding a Quoted-Printable
body, any trailing white space on a line must be
deleted, as it will necessarily have been added by
intermediate transport agents.
(4) (Line Breaks) A line break in a text body, represented
as a CRLF sequence in the text canonical form, must be
represented by a (RFC 822) line break, which is also a
CRLF sequence, in the Quoted-Printable encoding. Since
the canonical representation of media types other than
text do not generally include the representation of
line breaks as CRLF sequences, no hard line breaks
(i.e. line breaks that are intended to be meaningful
and to be displayed to the user) can occur in the
quoted-printable encoding of such types. Sequences
like "=0D", "=0A", "=0A=0D" and "=0D=0A" will routinely
appear in non-text data represented in quoted-
printable, of course.
Note that many implementations may elect to encode the
local representation of various content types directly
rather than converting to canonical form first,
encoding, and then converting back to local
representation. In particular, this may apply to plain
text material on systems that use newline conventions
other than a CRLF terminator sequence. Such an
implementation optimization is permissible, but only
when the combined canonicalization-encoding step is
equivalent to performing the three steps separately.
(5) (Soft Line Breaks) The Quoted-Printable encoding
REQUIRES that encoded lines be no more than 76
characters long. If longer lines are to be encoded
with the Quoted-Printable encoding, "soft" line breaks
Freed & Borenstein Standards Track [Page 20]
RFC 2045 Internet Message Bodies November 1996
must be used. An equal sign as the last character on a
encoded line indicates such a non-significant ("soft")
line break in the encoded text.
Thus if the "raw" form of the line is a single unencoded line that
says:
Now's the time for all folk to come to the aid of their country.
This can be represented, in the Quoted-Printable encoding, as:
Now's the time =
for all folk to come=
to the aid of their country.
This provides a mechanism with which long lines are encoded in such a
way as to be restored by the user agent. The 76 character limit does
not count the trailing CRLF, but counts all other characters,
including any equal signs.
Since the hyphen character ("-") may be represented as itself in the
Quoted-Printable encoding, care must be taken, when encapsulating a
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -