⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rsakey.cpp

📁 rsa算法的c++实现,该程序实现利用私钥解密
💻 CPP
📖 第 1 页 / 共 2 页
字号:
#include <stdlib.h>
#include <string.h>
#include "rsakey.h"


#ifdef FLINT_TEST
static void cout_mess (const char* const, const int, const char* const);
#endif




// Member functions of class RSAkey

// Constructor 1
RSAkey::RSAkey (const int bitlen)
{
  int done;
  seedBBS ((unsigned long)time (NULL));
  do
    {
      done = RSAkey::makekey (bitlen);
    }
  while (!done);
}



// Constructor 2 with random seed in rnd and optional public exponent PubExp
// The constructor generates RSA keys of distinct binary length and optional
// given public exponent (must be odd). The pseudorandom number generator
// randBBS() is initialized with given LINT-parameter rnd.
// In case that PubExp == 1 or omitted, a random exponent is created. If 
// given exponen is even, an error condition is generated, that can be handelt
// by try() and catch() if exceptions are enabled.

RSAkey::RSAkey (const int bitlen, const LINT& rnd, const LINT& PubExp )
{
	int done;
  seedBBS (rnd);
  do
    {
      done = RSAkey::makekey (bitlen, PubExp);
    }
  while (!done);
}


/*
RSAkey::RSAkey ( const KEYSTRUCT& k) 
{  

	  key.pubexp      = k.pubexp;
      key.prvexp      = k.prvexp;
      key.mod         = k.mod;
      key.p           = k.p;
      key.q           = k.q;
      key.ep          = k.ep;
      key.eq          = k.eq;
      key.r           = k.r;
      key.bitlen_mod  = k.bitlen_mod;
      key.bytelen_mod = k.bytelen_mod;

}*/


// Export public key
PKEYSTRUCT RSAkey::export_public (void) const
{
  PKEYSTRUCT pktmp;

  pktmp.pubexp = key.pubexp;
  pktmp.mod = key.mod;
  pktmp.bitlen_mod = key.bitlen_mod;
  pktmp.bytelen_mod = key.bytelen_mod;

  return pktmp;
}

void RSAkey::copycreate(const KEYSTRUCT& k)
{
	key.pubexp      = k.pubexp;
      key.prvexp      = k.prvexp;
      key.mod         = k.mod;
      key.p           = k.p;
      key.q           = k.q;
      key.ep          = k.ep;
      key.eq          = k.eq;
      key.r           = k.r;
      key.bitlen_mod  = k.bitlen_mod;
      key.bytelen_mod = k.bytelen_mod;
}


// Decryption
UCHAR* RSAkey::decrypt (const LINT& Ciph, int* LenMess)
{
  UCHAR* Mess = lint2byte (fastdecrypt (Ciph), LenMess);

#ifdef FLINT_TEST
  cout_mess ((const char*)Mess, key.bytelen_mod - 1, "Encryption Block after decryption");
#endif

  // Parsing decrypted Encryption Block, PKCS#1-formatted
  return parse_pkcs1 (Mess, LenMess);
}


// Sign
// Returns 0 if message too long
LINT RSAkey::sign (const UCHAR* const Mess, const int LenMess)
{

#ifdef FLINT_TEST
  cout << "Length of modulus = " << key.bytelen_mod << " byte." << endl;
#endif

  int LenEncryptionBlock = key.bytelen_mod - 1;
  //UCHAR HashRes[RMDVER>>3];
  UCHAR* EncryptionBlock = new UCHAR[LenEncryptionBlock];

  //ripemd160 (HashRes, (UCHAR*)Mess, (ULONG)LenMess);
 // if (NULL == format_pkcs1 (EncryptionBlock, LenEncryptionBlock,
//                            BLOCKTYPE_SIGN, HashRes, RMDVER >> 3))
  if (NULL == format_pkcs1 (EncryptionBlock, LenEncryptionBlock,
                            BLOCKTYPE_SIGN, Mess, ULONG(LenMess)))
    {
      delete [] EncryptionBlock;
      return LINT (0);             // Error: Message too long
    }

#ifdef FLINT_TEST
  cout_mess ((const char*)EncryptionBlock, LenEncryptionBlock, "Encryption Block");
#endif

  // Convert Encryption Block into LINT value (Constructor 3)
  LINT m = LINT (EncryptionBlock, LenEncryptionBlock);
  delete [] EncryptionBlock;
  

  return fastdecrypt (m);
}


// Key deletion
void RSAkey::purge (void)
{
  key.pubexp.purge ();
  key.prvexp.purge ();
  key.mod.purge ();
  key.p.purge ();
  key.q.purge ();
  key.ep.purge ();
  key.eq.purge ();
  key.r.purge ();
  key.bitlen_mod = 0;
  key.bytelen_mod = 0;
}





// RSAkey auxiliary functions


// Generation of RSA keys acc. to IEEE P1363, Annex A.
// A public exponent may be given in PubExp. If PubExp is omitted or
// PubExp == 1 a public exponent of half the modulus length
// is choosen at random.

int RSAkey::makekey (const int length, const LINT& PubExp)
{
  // Generate prime p
  // 2^(m - r - 1) <= p < 2^(m - r), with
  // m = floor((length + 1)/2) and r randomly chosen from intervall 2 <= r < 15
  const USHORT m = (((const USHORT)length + 1) >> 1) - 2 - usrandBBS_l () % 13;
  key.p = findprime (m, PubExp);

  // Determine intervall qmin and qmax for prime q
  // Set qmin = floor ((2^(length - 1))/p + 1)
  LINT qmin = LINT(0).setbit (length - 1)/key.p + 1;
  // Set qmax = floor ((2^length)/p)
  LINT qmax = LINT(0).setbit (length)/key.p;

  // Generate prime q > p
  // qmin <= q <= qmax
  key.q = findprime (qmin, qmax, PubExp);

  // Generate modulus p*q
  // 2^(length - 1) <= p*q < 2^length
  key.mod = key.p * key.q;

  // Calculate Euler's Phi-function
  LINT phi_n = key.mod - key.p - key.q + 1;

  // Generate public key, if not defined in PubExp, of half the number of 
  // the modulus digits
  if (1 == PubExp)
    {
      key.pubexp = randBBS (length/2) | 1; 
      while (gcd (key.pubexp, phi_n) != 1)
        {
          ++key.pubexp;
          ++key.pubexp;
        }
    }
  else
    {
      key.pubexp = PubExp;
    }

  // Generate secret key
  key.prvexp = key.pubexp.inv (phi_n);

  // Generate secret key components for fast decryption
  // acc. to Chinese Remainder Theorem
  key.ep = key.prvexp % (key.p - 1);
  key.eq = key.prvexp % (key.q - 1);
  key.r = inv (key.p, key.q);     // r = p^(-1) mod q, as an alternative 
                                  // r = q^(-1) mod p is possible

  // Store keylength
  key.bitlen_mod = ld (key.mod);
  key.bytelen_mod = key.bitlen_mod >> 3;
  if ((key.bitlen_mod % 8) > 0)
    {
      ++key.bytelen_mod;
    }

#ifdef FLINT_TEST
  cout << "Modulus = " << key.mod << endl;
  cout << "Public exponent e = " << key.pubexp << endl;
  cout << "Private exponent d = " << key.prvexp << endl;
  cout << "p = " << key.p << endl;
  cout << "q = " << key.q << endl;
  cout << "d mod p-1 = " << key.ep << endl;
  cout << "d mod q-1 = " << key.eq << endl;
  cout << "Inverse of p mod q = " << key.r << endl;
#endif // FLINT_TEST

  return testkey ();
}


// Test keys
int RSAkey::testkey ()
{
  LINT mess = randBBS (ld (key.mod) >> 1);
  return (mess == fastdecrypt (mexpkm (mess, key.pubexp, key.mod)));
}


// Fast RSA-decryption acc. to Chinese Remainder Theorem (CRT)
LINT RSAkey::fastdecrypt (const LINT& mess)
{
  LINT m, w;                           // If alternative CRT key component
  m = mexpkm (mess, key.ep, key.p);    // r = q^(-1) mod p 
  w = mexpkm (mess, key.eq, key.q);    // is in use:
  w.msub (m, key.q);                   // m.msub (w, key.p);
  w = w.mmul (key.r, key.q) * key.p;   // m = m.mmul (key.r, key.p) * key.q;
  return (w + m);
}


// Operators =, ==, != in class RSAkey

RSAkey& RSAkey::operator= (const RSAkey &k)
{
  if ((&k != this)) // Don't copy object into itself
    {
      key.pubexp      = k.key.pubexp;
      key.prvexp      = k.key.prvexp;
      key.mod         = k.key.mod;
      key.p           = k.key.p;
      key.q           = k.key.q;
      key.ep          = k.key.ep;
      key.eq          = k.key.eq;
      key.r           = k.key.r;
      key.bitlen_mod  = k.key.bitlen_mod;
      key.bytelen_mod = k.key.bytelen_mod;
    }
  return *this;
}


int operator== (const RSAkey& k1, const RSAkey& k2)
{
  if (&k1 == &k2)       //lint !e506
    {
      return 1;
    }

  return (k1.key.pubexp      == k2.key.pubexp      &&
          k1.key.prvexp      == k2.key.prvexp      &&
          k1.key.mod         == k2.key.mod         &&
          k1.key.p           == k2.key.p           &&
          k1.key.q           == k2.key.q           &&
          k1.key.ep          == k2.key.ep          &&
          k1.key.eq          == k2.key.eq          &&
          k1.key.r           == k2.key.r           &&
          k1.key.bitlen_mod  == k2.key.bitlen_mod  &&
          k1.key.bytelen_mod == k2.key.bytelen_mod);

  // Operator == returns 1 if k1 == k2, 0 else
}


int operator!= (const RSAkey& k1, const RSAkey& k2)
{
  if (&k1 == &k2)       //lint !e506
    {
      return 0;
    }

  return (k1.key.pubexp      != k2.key.pubexp      ||
          k1.key.prvexp      != k2.key.prvexp      ||
          k1.key.mod         != k2.key.mod         ||
          k1.key.p           != k2.key.p           ||
          k1.key.q           != k2.key.q           ||
          k1.key.ep          != k2.key.ep          ||
          k1.key.eq          != k2.key.eq          ||
          k1.key.r           != k2.key.r           ||
          k1.key.bitlen_mod  != k2.key.bitlen_mod  ||
          k1.key.bytelen_mod != k2.key.bytelen_mod);

  // Operator != returns 1 if k1 != k2, 0 else
}


fstream& operator<< (fstream& s, const RSAkey& k)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -