📄 input-algo-modal-analysis
字号:
/* [a] : Parameters for Modal Analysis and embedded Newmark Integration */
no_eigen = 2;
dt = 0.03 sec;
nsteps = 200;
beta = 0.25;
gamma = 0.50;
/* [b] : Form Mass and stiffness matrices */
mass = ColumnUnits( 1500*[ 1, 0, 0, 0;
0, 2, 0, 0;
0, 0, 2, 0;
0, 0, 0, 3], [kg] );
stiff = ColumnUnits( 800*[ 1, -1, 0, 0;
-1, 3, -2, 0;
0, -2, 5, -3;
0, 0, -3, 7], [kN/m] );
PrintMatrix(mass, stiff);
/* [c] : First two eigenvalues, periods, and eigenvectors */
eigen = Eigen(stiff, mass, [no_eigen]);
eigenvalue = Eigenvalue(eigen);
eigenvector = Eigenvector(eigen);
for(i = 1; i <= no_eigen; i = i + 1) {
print "Mode", i ," : w^2 = ", eigenvalue[i][1];
print " : T = ", 2*PI/sqrt(eigenvalue[i][1]) ,"\n";
}
PrintMatrix(eigenvector);
/* [d] : Generalized mass and stiffness matrices */
EigenTrans = Trans(eigenvector);
Mstar = EigenTrans*mass*eigenvector;
Kstar = EigenTrans*stiff*eigenvector;
PrintMatrix( Mstar );
PrintMatrix( Kstar );
/*
* [e] : Generate and print external saw-tooth external loading matrix. First and
* second columns contain time (sec), and external force (kN), respectively.
*/
myload = ColumnUnits( Matrix([21,2]), [sec], [1]);
myload = ColumnUnits( myload, [kN], [2]);
for(i = 1; i <= 6; i = i + 1) {
myload[i][1] = (i-1)*dt;
myload[i][2] = (2*i-2)*(1 kN);
}
for(i = 7; i <= 16; i = i + 1) {
myload[i][1] = (i-1)*dt;
myload[i][2] = (22-2*i)*(1 kN);
}
for(i = 17; i <= 21; i = i + 1) {
myload[i][1] = (i-1)*dt;
myload[i][2] = (2*i-42)*(1 kN);
}
PrintMatrix(myload);
/* [f] : Initialize system displacement, velocity, and load vectors */
displ = ColumnUnits( Matrix([4,1]), [m] );
vel = ColumnUnits( Matrix([4,1]), [m/sec]);
eload = ColumnUnits( Matrix([4,1]), [kN]);
/* [g] : Initialize modal displacement, velocity, and acc'n vectors */
Mdispl = ColumnUnits( Matrix([ no_eigen,1 ]), [m] );
Mvel = ColumnUnits( Matrix([ no_eigen,1 ]), [m/sec]);
Maccel = ColumnUnits( Matrix([ no_eigen,1 ]), [m/sec/sec]);
/*
* [g] : Allocate Matrix to store five response parameters --
* Col 1 = time (sec);
* Col 2 = 1st mode displacement (cm);
* Col 3 = 2nd mode displacement (cm);
* Col 4 = 1st + 2nd mode displacement (cm);
* Col 5 = Total energy (Joules)
*/
response = ColumnUnits( Matrix([nsteps+1,5]), [sec], [1]);
response = ColumnUnits( response, [cm], [2]);
response = ColumnUnits( response, [cm], [3]);
response = ColumnUnits( response, [cm], [4]);
response = ColumnUnits( response, [Jou], [5]);
/* [h] : Compute (and compute LU decomposition) effective mass */
MASS = Mstar + Kstar*beta*dt*dt;
lu = Decompose(MASS);
/* [i] : Mode-Displacement Solution for Response of Undamped MDOF System */
for(i = 1; i <= nsteps; i = i + 1) {
/* [i.1] : Update external load */
if((i+1) <= 21) then {
eload[1][1] = myload[i+1][2];
} else {
eload[1][1] = 0.0 kN;
}
Pstar = EigenTrans*eload;
R = Pstar - Kstar*(Mdispl + Mvel*dt + Maccel*(dt*dt/2.0)*(1-2*beta));
/* [i.2] : Compute new acceleration, velocity and displacement */
Maccel_new = Substitution(lu,R);
Mvel_new = Mvel + dt*(Maccel*(1.0-gamma) + gamma*Maccel_new);
Mdispl_new = Mdispl + dt*Mvel + ((1 - 2*beta)*Maccel + 2*beta*Maccel_new)*dt*dt/2;
/* [i.3] : Update and print new response */
Maccel = Maccel_new;
Mvel = Mvel_new;
Mdispl = Mdispl_new;
/* [i.4] : Combine Modes */
displ = eigenvector*Mdispl;
vel = eigenvector*Mvel;
/* [i.5] : Compute Total System Energy */
e1 = Trans(vel)*mass*vel;
e2 = Trans(displ)*stiff*displ;
energy = 0.5*(e1 + e2);
/* [i.6] : Save components of time-history response */
response[i+1][1] = i*dt; /* Time */
response[i+1][2] = eigenvector[1][1]*Mdispl[1][1]; /* 1st mode displacement */
response[i+1][3] = eigenvector[1][2]*Mdispl[2][1]; /* 2nd mode displacement */
response[i+1][4] = displ[1][1]; /* 1st + 2nd mode displacement */
response[i+1][5] = energy[1][1]; /* System Energy */
}
/* [j] : Print response matrix and quit */
PrintMatrix(response);
quit;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -