📄 msp430dmam.nc
字号:
/* "Copyright (c) 2000-2003 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement * is hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY * OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." *///@author Ben Greenstein <ben@cs.ucla.edu>includes MSP430DMA;module MSP430DMAM { provides { interface MSP430DMAControl as DMAControl; interface MSP430DMAChannelControl as DMAChannelCtrl0; interface MSP430DMAChannelControl as DMAChannelCtrl1; interface MSP430DMAChannelControl as DMAChannelCtrl2; } }implementation { MSP430REG_NORACE(DMACTL0); MSP430REG_NORACE(DMACTL1); MSP430REG_NORACE(DMA0CTL); MSP430REG_NORACE(DMA0SA); MSP430REG_NORACE(DMA0DA); MSP430REG_NORACE(DMA0SZ); MSP430REG_NORACE(DMA1CTL); MSP430REG_NORACE(DMA1SA); MSP430REG_NORACE(DMA1DA); MSP430REG_NORACE(DMA1SZ); MSP430REG_NORACE(DMA2CTL); MSP430REG_NORACE(DMA2SA); MSP430REG_NORACE(DMA2DA); MSP430REG_NORACE(DMA2SZ);TOSH_SIGNAL(DACDMA_VECTOR){ // DMAIFG flags are not reset automatically and must be reset by software if (DMA0CTL & DMAIFG) { DMA0CTL &= ~DMAIFG; if (DMA0CTL & DMAABORT){ DMA0CTL &= ~DMAABORT; signal DMAChannelCtrl0.transferDone(FAIL); } else signal DMAChannelCtrl0.transferDone(SUCCESS); } if (DMA1CTL & DMAIFG) { DMA1CTL &= ~DMAIFG; signal DMAChannelCtrl1.transferDone(SUCCESS); } if (DMA2CTL& DMAIFG) { DMA2CTL &= ~DMAIFG; signal DMAChannelCtrl2.transferDone(SUCCESS); }} // ---------------------------------------------------------- // DMA Control // ---------------------------------------------------------- // Should a DMA transfer occur immediately (FALSE), // on the next instruction fetch after the trigger (TRUE) async command void DMAControl.setOnFetch(){ DMACTL1 |= DMAONFETCH; } async command void DMAControl.clearOnFetch(){ DMACTL1 &= ~(DMAONFETCH); } // Should the DMA channel priority be 0, 1, 2 (FALSE), or // should it change with each transfer (TRUE) async command void DMAControl.setRoundRobin(){ DMACTL1 |= ROUNDROBIN; } async command void DMAControl.clearRoundRobin(){ DMACTL1 &= ~(ROUNDROBIN); } // This enables the interruption of a DMA transfer by an NMI // interrupt. WHen an NMI interrupts a DMA transfer, the current // transfer is completed normally, further transfers are stopped, // and DMAABORT is set. async command void DMAControl.setENNMI(){ DMACTL1 |= ENNMI; } async command void DMAControl.clearENNMI(){ DMACTL1 &= ~(ENNMI); } async command void DMAControl.setState(dma_state_t s){ uint16_t dmactl1 = 0; dmactl1 |= (s.enableNMI ? ENNMI : 0); dmactl1 |= (s.roundRobin ? ROUNDROBIN : 0); dmactl1 |= (s.onFetch ? DMAONFETCH : 0); DMACTL1 = dmactl1; } async command dma_state_t DMAControl.getState(){ dma_state_t s; s.enableNMI = (DMACTL1 & ENNMI ? 1 : 0); s.roundRobin = (DMACTL1 & ROUNDROBIN ? 1 : 0); s.onFetch = (DMACTL1 & DMAONFETCH ? 1 : 0); s.reserved = 0; return s; } async command void DMAControl.reset(){ DMACTL0 = 0; DMACTL1 = 0; } // ---------------------------------------------------------- // DMA Channel 0 Control // ---------------------------------------------------------- // ----- DMA Trigger Mode ----- async command result_t DMAChannelCtrl0.setTrigger(dma_trigger_t trigger){ result_t res = SUCCESS; if (DMA0CTL & DMAEN) res = FAIL; else { DMACTL0 &= ~(DMA0TSEL0 | DMA0TSEL1 | DMA0TSEL2 | DMA0TSEL3); DMACTL0 |= ((DMATSEL_MASK & trigger)<<DMA0TSEL_SHIFT); } return res; } async command void DMAChannelCtrl0.clearTrigger(){ DMACTL0 &= ~(DMA0TSEL0 | DMA0TSEL1 | DMA0TSEL2 | DMA0TSEL3); } // ----- DMA Transfer Mode ----- async command void DMAChannelCtrl0.setSingleMode(){ DMA0CTL &= ~(DMADT0 | DMADT1 | DMADT2); } async command void DMAChannelCtrl0.setBlockMode(){ DMA0CTL &= ~(DMADT0 | DMADT1 | DMADT2); DMA0CTL |= DMADT0; } async command void DMAChannelCtrl0.setBurstMode(){ DMA0CTL &= ~(DMADT0 | DMADT1 | DMADT2); DMA0CTL |= DMADT1; } async command void DMAChannelCtrl0.setRepeatedSingleMode(){ DMA0CTL &= ~(DMADT0 | DMADT1 | DMADT2); DMA0CTL |= DMADT2; } async command void DMAChannelCtrl0.setRepeatedBlockMode(){ DMA0CTL &= ~(DMADT0 | DMADT1 | DMADT2); DMA0CTL |= (DMADT2 | DMADT0); } async command void DMAChannelCtrl0.setRepeatedBurstMode(){ DMA0CTL &= ~(DMADT0 | DMADT1 | DMADT2); DMA0CTL |= (DMADT2 | DMADT1); } // ----- DMA Address Incrementation ----- async command void DMAChannelCtrl0.setSrcNoIncrement(){ DMA0CTL &= ~(DMASRCINCR0 | DMASRCINCR1); } async command void DMAChannelCtrl0.setSrcDecrement(){ DMA0CTL |= DMASRCINCR1; } async command void DMAChannelCtrl0.setSrcIncrement(){ DMA0CTL |= (DMASRCINCR0 | DMASRCINCR1); } async command void DMAChannelCtrl0.setDstNoIncrement(){ DMA0CTL &= ~(DMADSTINCR0 | DMADSTINCR1); } async command void DMAChannelCtrl0.setDstDecrement(){ DMA0CTL |= DMADSTINCR1; } async command void DMAChannelCtrl0.setDstIncrement(){ DMA0CTL |= (DMADSTINCR0 | DMADSTINCR1); } // ----- DMA Word Size Mode ----- async command void DMAChannelCtrl0.setWordToWord(){ DMA0CTL &= ~(DMASRCBYTE | DMADSTBYTE); DMA0CTL |= DMASWDW; } async command void DMAChannelCtrl0.setByteToWord(){ DMA0CTL &= ~(DMASRCBYTE | DMADSTBYTE); DMA0CTL |= DMASBDW; } async command void DMAChannelCtrl0.setWordToByte(){ DMA0CTL &= ~(DMASRCBYTE | DMADSTBYTE); DMA0CTL |= DMASWDB; } async command void DMAChannelCtrl0.setByteToByte(){ DMA0CTL &= ~(DMASRCBYTE | DMADSTBYTE); DMA0CTL |= DMASBDB; } // ----- DMA Level ----- async command void DMAChannelCtrl0.setEdgeSensitive(){ DMA0CTL &= ~DMALEVEL; } async command void DMAChannelCtrl0.setLevelSensitive(){ DMA0CTL |= DMALEVEL; } // ----- DMA Enable ----- async command void DMAChannelCtrl0.enableDMA(){ DMA0CTL |= DMAEN; } async command void DMAChannelCtrl0.disableDMA(){ DMA0CTL &= ~DMAEN; } // ----- DMA Interrupt ----- async command void DMAChannelCtrl0.enableInterrupt() { DMA0CTL |= DMAIE; } async command void DMAChannelCtrl0.disableInterrupt() { DMA0CTL &= ~DMAIE; } async command bool DMAChannelCtrl0.interruptPending(){ bool ret = FALSE; if (DMA0CTL & DMAIFG) ret = TRUE; return ret; } // ----- DMA Abort ----- // todo: should this trigger an interrupt async command bool DMAChannelCtrl0.aborted(){ bool ret = FALSE; if (DMA0CTL & DMAABORT) ret = TRUE; return ret; } // ----- DMA Software Request ----- async command void DMAChannelCtrl0.triggerDMA() { DMA0CTL |= DMAREQ; } // ----- DMA Source Address ----- async command void DMAChannelCtrl0.setSrc(void *saddr){ DMA0SA = (uint16_t)saddr; } // ----- DMA Destination Address ---- async command void DMAChannelCtrl0.setDst(void *daddr){ DMA0DA = (uint16_t)daddr; } // ----- DMA Destination Address ---- async command void DMAChannelCtrl0.setSize(uint16_t sz){ DMA0SZ = sz; } async command void DMAChannelCtrl0.setState(dma_channel_state_t s){ uint16_t dmactl0 = DMACTL0; uint16_t dma0ctl = 0; dmactl0 |= ((s.trigger & DMATSEL_MASK) << DMA0TSEL_SHIFT); dma0ctl |= (s.request ? DMAREQ : 0); dma0ctl |= (s.abort ? DMAABORT : 0); dma0ctl |= (s.interruptEnable ? DMAIE : 0); dma0ctl |= (s.interruptFlag ? DMAIFG : 0); dma0ctl |= (s.enable ? DMAEN : 0); dma0ctl |= (s.level ? DMALEVEL : 0); dma0ctl |= (s.srcByte ? DMASRCBYTE : 0); dma0ctl |= (s.dstByte ? DMADSTBYTE : 0); dma0ctl |= ((s.srcIncrement & DMAINCR_MASK) << DMASRCINCR_SHIFT); dma0ctl |= ((s.dstIncrement & DMAINCR_MASK) << DMADSTINCR_SHIFT); dma0ctl |= ((s.transferMode & DMADT_MASK) << DMADT_SHIFT); DMA0SA = (uint16_t)(s.srcAddr); //DMA0SA = ADC12MEM_; DMA0DA = (uint16_t)(s.dstAddr); DMA0SZ = s.size; DMACTL0 = dmactl0; DMA0CTL= dma0ctl; return; } async command dma_channel_state_t DMAChannelCtrl0.getState(){ dma_channel_state_t s; s.trigger = ((DMACTL0 >> DMA0TSEL_SHIFT) & DMATSEL_MASK); s.reserved = 0; s.request = (DMA0CTL & DMAREQ ? 1 : 0); s.abort = (DMA0CTL & DMAABORT ? 1 : 0); s.interruptEnable = (DMA0CTL & DMAIE ? 1 : 0); s.interruptFlag = (DMA0CTL & DMAIFG ? 1 : 0); s.enable = (DMA0CTL & DMAEN ? 1 : 0); s.level = (DMA0CTL & DMALEVEL ? 1 : 0); s.srcByte = (DMA0CTL & DMASRCBYTE ? 1 : 0); s.dstByte = (DMA0CTL & DMADSTBYTE ? 1 : 0); s.srcIncrement = ((DMA0CTL >> DMASRCINCR_SHIFT) & DMAINCR_MASK); s.dstIncrement = ((DMA0CTL >> DMADSTINCR_SHIFT) & DMAINCR_MASK); s.reserved2 = 0; s.transferMode = ((DMA0CTL >> DMADT_SHIFT) & DMADT_MASK); s.srcAddr = (void *)DMA0SA; s.dstAddr = (void *)DMA0DA; s.size = DMA0SZ; } async command void DMAChannelCtrl0.reset(){ DMA0CTL = 0; DMA0SA = 0; DMA0DA = 0; DMA0SZ = 0; } // ---------------------------------------------------------- // DMA Channel 1 Control // ---------------------------------------------------------- // ----- DMA Trigger Mode ----- async command result_t DMAChannelCtrl1.setTrigger(dma_trigger_t trigger){ result_t res = SUCCESS; if (DMA1CTL & DMAEN) res = FAIL; else { DMACTL0 &= ~(DMA1TSEL0 | DMA1TSEL1 | DMA1TSEL2 | DMA1TSEL3); DMACTL0 |= ((DMATSEL_MASK & trigger)<<DMA1TSEL_SHIFT); } return res; } async command void DMAChannelCtrl1.clearTrigger(){ DMACTL0 &= ~(DMA1TSEL0 | DMA1TSEL1 | DMA1TSEL2 | DMA1TSEL3); } // ----- DMA Transfer Mode ----- async command void DMAChannelCtrl1.setSingleMode(){ DMA1CTL &= ~(DMADT0 | DMADT1 | DMADT2); } async command void DMAChannelCtrl1.setBlockMode(){ DMA1CTL &= ~(DMADT0 | DMADT1 | DMADT2); DMA1CTL |= DMADT0; } async command void DMAChannelCtrl1.setBurstMode(){ DMA1CTL &= ~(DMADT0 | DMADT1 | DMADT2); DMA1CTL |= DMADT1; } async command void DMAChannelCtrl1.setRepeatedSingleMode(){
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -