📄 melexism.nc
字号:
/* tab:4 * "Copyright (c) 2000-2003 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * * Copyright (c) 2002-2003 Intel Corporation * All rights reserved. * * This file is distributed under the terms in the attached INTEL-LICENSE * file. If you do not find these files, copies can be found by writing to * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA, * 94704. Attention: Intel License Inquiry. *//* * * Authors: Joe Polastre * * $Id: MelexisM.nc,v 1.5 2003/12/13 01:50:57 whong Exp $ */includes sensorboard;module MelexisM { provides { interface ADC as Temperature; interface ADC as Thermopile; interface SplitControl; interface Calibration; interface ThermopileSelectPin; } uses { interface StdControl as SwitchControl; interface SplitControl as LowerControl; interface Calibration as LowerCalibrate; interface Switch; interface Switch as IOSwitch; interface ADC as LowerThermopile; interface ADC as LowerTemp; }}implementation { enum { THERMOPILE = 0, TEMP = 1, IDLE, WAIT_SWITCH_ON, WAIT_SWITCH_OFF, BUSY, REPORT_SAMPLE, MAIN_SWITCH_ON, MAIN_SWITCH_OFF, POWERON, POWEROFF, IDLE2, SELECT2}; char state; char state2; char sensor; char iostate; char c_word; uint16_t temp,thermopile; uint16_t c_value; task void IOBus() { if (state == BUSY) { // get sample if (sensor == THERMOPILE) call LowerThermopile.getData(); else if (sensor == TEMP) call LowerTemp.getData(); else if (sensor == 2) call LowerCalibrate.getData(); return; } else if (state == REPORT_SAMPLE) { uint16_t l_thermopile = thermopile; uint16_t l_temp = temp; char l_sensor = sensor; call LowerControl.stop(); state = IDLE; // signal data if (l_sensor == THERMOPILE) signal Thermopile.dataReady(l_thermopile); if (l_sensor == TEMP) signal Temperature.dataReady(l_temp); if (l_sensor == 2) signal Calibration.dataReady(c_word, c_value); return; } } event result_t LowerControl.initDone() { return signal SplitControl.initDone(); } event result_t LowerControl.startDone() { return signal SplitControl.startDone(); } event result_t LowerControl.stopDone() { return signal SplitControl.stopDone(); } async event result_t LowerTemp.dataReady(uint16_t data) { if (state == BUSY) { state = REPORT_SAMPLE; temp = data; post IOBus(); } return SUCCESS; } async event result_t LowerThermopile.dataReady(uint16_t data) { if (state == BUSY) { state = REPORT_SAMPLE; thermopile = data; post IOBus(); } return SUCCESS; } command result_t SplitControl.init() { state = POWEROFF; state2 = IDLE2; call LowerControl.init(); return call SwitchControl.init(); } command result_t SplitControl.start() { state = MAIN_SWITCH_ON; call SwitchControl.start(); if (call Switch.set(MICAWB_THERM_POWER,1) != SUCCESS) { state = WAIT_SWITCH_ON; } return SUCCESS; } command result_t SplitControl.stop() { state = MAIN_SWITCH_OFF; if (call Switch.set(MICAWB_THERM_POWER,0) != SUCCESS) { state = WAIT_SWITCH_OFF; } return SUCCESS; } event result_t Switch.getDone(char value) { return SUCCESS; } event result_t Switch.setDone(bool l_result) { if (state == WAIT_SWITCH_ON) { if (call Switch.set(MICAWB_THERM_POWER,1) == SUCCESS) { state = MAIN_SWITCH_ON; } } else if (state == WAIT_SWITCH_OFF) { if (call Switch.set(MICAWB_THERM_POWER,0) == SUCCESS) { state = MAIN_SWITCH_OFF; } } else if (state == MAIN_SWITCH_ON) { state = IDLE; } else if (state == MAIN_SWITCH_OFF) { state = POWEROFF; } return SUCCESS; } event result_t Switch.setAllDone(bool l_result) { return SUCCESS; } // no such thing async command result_t Temperature.getContinuousData() { return FAIL; } // no such thing async command result_t Thermopile.getContinuousData() { return FAIL; } command result_t Calibration.getData() { if (state == IDLE) { state = BUSY; sensor = 2; // enable the module and disable flash lines call LowerControl.start(); post IOBus(); return SUCCESS; } return FAIL; } async command result_t Temperature.getData() { if (state == IDLE) { state = BUSY; sensor = TEMP; // enable the module and disable flash lines call LowerControl.start(); post IOBus(); return SUCCESS; } return FAIL; } async command result_t Thermopile.getData() { if (state == IDLE) { state = BUSY; sensor = THERMOPILE; // enable the module and disable flash lines call LowerControl.start(); post IOBus(); return SUCCESS; } return FAIL; } event result_t LowerCalibrate.dataReady(char word, uint16_t value) { // on the last byte of calibration data, shut down the I/O interface if (state == BUSY) { if (word == 2) { state = REPORT_SAMPLE; c_word = word; c_value = value; post IOBus(); } else { signal Calibration.dataReady(word, value); } } return SUCCESS; } command result_t ThermopileSelectPin.set(bool value) { if (state2 == IDLE2) { state2 = SELECT2; return call IOSwitch.set(MICAWB_THERMOPILE_SELECT, value); } return FAIL; } event result_t IOSwitch.getDone(char value) { return SUCCESS; } event result_t IOSwitch.setDone(bool l_result) { if (state2 == SELECT2) { state2 = IDLE2; signal ThermopileSelectPin.setDone(); } return SUCCESS; } event result_t IOSwitch.setAllDone(bool l_result) { return SUCCESS; } default event result_t Calibration.dataReady(char word, uint16_t value) { return SUCCESS; } default async event result_t Temperature.dataReady(uint16_t data) { return SUCCESS; } default async event result_t Thermopile.dataReady(uint16_t data) { return SUCCESS; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -