⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 skipjackm.nc

📁 无线通信的主要编程软件,是无线通信工作人员的必备工具,关天相关教程我会在后续传上.
💻 NC
📖 第 1 页 / 共 2 页
字号:
// $Id: SkipJackM.nc,v 1.3 2004/05/18 19:16:33 nksrules Exp $/*									tab:4 * "Copyright (c) 2000-2003 The Regents of the University  of California.   * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. *  * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *  * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * * Copyright (c) 2002-2003 Intel Corporation * All rights reserved. * * This file is distributed under the terms in the attached INTEL-LICENSE      * file. If you do not find these files, copies can be found by writing to * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,  * 94704.  Attention:  Intel License Inquiry. *//* Authors: Naveen Sastry * Date:    12/28/02 *//** * @author Naveen Sastry */includes crypto;/** * From the NIST description of SkipJack. */module SkipJackM {  provides interface BlockCipher;  provides interface BlockCipherInfo;}implementation{  // our context: we just expand the key to 20 bytes.  //  // we have two options for the expansion:  //   1. no expansion. advantage: 10byte context. disadvantage: mucks up  //      the G box code with ifs / mods. Alternatively adds lots of code and  //      muckiness.  //   2. expand key to 128 bytes. Makes G boxes easy to write, and minimal  //      code expansion. disadvantage: wasted memory  //   3. expand key to 20 bytes.  G boxes still simple, the encode and decode  //      functions are a little more complicated, but still more or less  //      managable. this is what we've implemented.   typedef struct SJContext {     uint8_t skey [ 20 ]; /* 2 times keysize.                             makes unrolling keystream easier / efficient */   } SJContext;   // Skipjack only deals with 8 byte blocks   enum { BSIZE = 8 };      //   uint8_t SJ_F[] __attribute__((C)) = { // ram   //   static const prog_uchar SJ_F[] = { // prog memory   // F-BOX   // It can live in either RAM (faster access) or program memory (save ram,   // but slower access). The type CRYPTO_TABLE_TYPE, defined in crypto.h   // defines where we drop the table and how we access it.  This is necessary   // to compile for the PC target since it doesn't support tables in   // program memory the same way.   static const CRYPTO_TABLE_TYPE SJ_F[] = {      0xA3, 0xD7, 0x09, 0x83, 0xF8, 0x48, 0xF6, 0xF4,      0xB3, 0x21, 0x15, 0x78, 0x99, 0xB1, 0xAF, 0xF9,      0xE7, 0x2D, 0x4D, 0x8A, 0xCE, 0x4C, 0xCA, 0x2E,      0x52, 0x95, 0xD9, 0x1E, 0x4E, 0x38, 0x44, 0x28,      0x0A, 0xDF, 0x02, 0xA0, 0x17, 0xF1, 0x60, 0x68,      0x12, 0xB7, 0x7A, 0xC3, 0xE9, 0xFA, 0x3D, 0x53,      0x96, 0x84, 0x6B, 0xBA, 0xF2, 0x63, 0x9A, 0x19,      0x7C, 0xAE, 0xE5, 0xF5, 0xF7, 0x16, 0x6A, 0xA2,      0x39, 0xB6, 0x7B, 0x0F, 0xC1, 0x93, 0x81, 0x1B,      0xEE, 0xB4, 0x1A, 0xEA, 0xD0, 0x91, 0x2F, 0xB8,      0x55, 0xB9, 0xDA, 0x85, 0x3F, 0x41, 0xBF, 0xE0,      0x5A, 0x58, 0x80, 0x5F, 0x66, 0x0B, 0xD8, 0x90,      0x35, 0xD5, 0xC0, 0xA7, 0x33, 0x06, 0x65, 0x69,      0x45, 0x00, 0x94, 0x56, 0x6D, 0x98, 0x9B, 0x76,      0x97, 0xFC, 0xB2, 0xC2, 0xB0, 0xFE, 0xDB, 0x20,      0xE1, 0xEB, 0xD6, 0xE4, 0xDD, 0x47, 0x4A, 0x1D,      0x42, 0xED, 0x9E, 0x6E, 0x49, 0x3C, 0xCD, 0x43,      0x27, 0xD2, 0x07, 0xD4, 0xDE, 0xC7, 0x67, 0x18,      0x89, 0xCB, 0x30, 0x1F, 0x8D, 0xC6, 0x8F, 0xAA,      0xC8, 0x74, 0xDC, 0xC9, 0x5D, 0x5C, 0x31, 0xA4,      0x70, 0x88, 0x61, 0x2C, 0x9F, 0x0D, 0x2B, 0x87,      0x50, 0x82, 0x54, 0x64, 0x26, 0x7D, 0x03, 0x40,      0x34, 0x4B, 0x1C, 0x73, 0xD1, 0xC4, 0xFD, 0x3B,      0xCC, 0xFB, 0x7F, 0xAB, 0xE6, 0x3E, 0x5B, 0xA5,      0xAD, 0x04, 0x23, 0x9C, 0x14, 0x51, 0x22, 0xF0,      0x29, 0x79, 0x71, 0x7E, 0xFF, 0x8C, 0x0E, 0xE2,      0x0C, 0xEF, 0xBC, 0x72, 0x75, 0x6F, 0x37, 0xA1,      0xEC, 0xD3, 0x8E, 0x62, 0x8B, 0x86, 0x10, 0xE8,      0x08, 0x77, 0x11, 0xBE, 0x92, 0x4F, 0x24, 0xC5,      0x32, 0x36, 0x9D, 0xCF, 0xF3, 0xA6, 0xBB, 0xAC,      0x5E, 0x6C, 0xA9, 0x13, 0x57, 0x25, 0xB5, 0xE3,      0xBD, 0xA8, 0x3A, 0x01, 0x05, 0x59, 0x2A, 0x46   };#define F(addr) CRYPTO_TABLE_ACCESS( &SJ_F[addr])      // G-Permutation: 4 round feistal structure #define G(key, b, bLeft, bRight) \     ( bLeft   = (b >> 8) ,          \       bRight  = b,                  \       bLeft  ^= F(bRight ^ key[0]), \       bRight ^= F(bLeft  ^ key[1]), \       bLeft  ^= F(bRight ^ key[2]), \       bRight ^= F(bLeft  ^ key[3]), \       (bLeft << 8) | bRight)#define G_INV(key, b, bLeft, bRight) \     ( bLeft   = (b >> 8),           \       bRight  = b,                  \       bRight ^= F(bLeft  ^ key[3]), \       bLeft  ^= F(bRight ^ key[2]), \       bRight ^= F(bLeft  ^ key[1]), \       bLeft  ^= F(bRight ^ key[0]), \       (bLeft << 8) | bRight)   // A-RULE: #define RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ) { \    tmp = w4;                                \    w4 = w3;                                 \    w3 = w2;                                 \    w2 = G(skey, w1, bLeft, bRight);         \    w1 = tmp ^ w2 ^ counter;                 \    counter++;                               \    skey += 4; }#define RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight) { \    tmp = w4;                                \    w4 = w1 ^ w2 ^ counter;                  \    w1 = G_INV(skey, w2, bLeft, bRight);     \    w2 = w3;                                 \    w3 = tmp;                                \    counter--;                               \    skey -= 4; }                             \   // B-RULE: #define RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ) { \    tmp = w1;                                \    w1 = w4;                                 \    w4 = w3;                                 \    w3 = tmp ^ w2 ^ counter;                 \    w2 = G(skey, tmp, bLeft, bRight);        \    counter++;                               \    skey += 4; }#define RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ) { \    tmp = w1;                                \    w1 = G_INV(skey, w2, bLeft, bRight);     \    w2 = w1 ^ w3 ^ counter;                  \    w3 = w4;                                 \    w4 = tmp;                                \    counter--;                               \    skey -= 4; }     result_t setupKey (CipherContext * context, uint8_t * key, uint8_t keysize);  /**   * Debug function   */  void dumpBuffer (char * bufName, uint8_t * buf, uint8_t size)    {#ifdef O      uint8_t i = 0;      // fixme watch buffer overrun      char tmp[512];      for (; i < size; i++) {        sprintf (tmp + i * 3, "%2x ", (char)buf[i] & 0xff);      }      dbg(DBG_CRYPTO, "%s: {%s}\n", bufName, tmp);#endif    }  /**   * Initialize the BlockCipher context.   *   * @param context structure to hold the opaque data from this initialization   *        call. It should be passed to future invocations of this module   *        which use this particular key.   * @param blockSize size of the block in bytes. Some cipher implementation   *        may support multiple block sizes, in which case any valid size   *        is valid.   * @param keySize key size in bytes   * @param key pointer to the key   *   * @return Whether initialization was successful. The command may be   *         unsuccessful if the key size or blockSize are not valid for the   *         given cipher implementation.    */  command result_t BlockCipher.init(CipherContext * context, uint8_t blockSize,                                    uint8_t keySize, uint8_t * key)    {      // 8 byte blocks only      if (blockSize != BSIZE) {        return FAIL;      }      return setupKey (context, key, keySize);    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -