⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 compute_teacher.m

📁 回声状态神经网络(ESN)是一种性能优异的递归神经网络
💻 M
字号:
function teachCollectMat = compute_teacher(outputSequence, esn, ...    nForgetPoints)% COMPUTE_TEACHER scales, shifts and applies the inverse output% activation function on the exepcted teacher. % the first nForgetPoints are being disregarded%% inputs:% outputSequence = teacher vector of size nTrainingPoints x nOutputDimension% esn = an ESN structure, which contains the information about the% transformation we need to apply to the teacher % nForgetPoints: an integer, may be negative, positive or zero.%    If positive: the first nForgetPoints will be disregarded (washing out%    initial reservoir transient)%    If negative: the network will be initially driven from zero state with%    the first input repeated |nForgetPoints| times; size(inputSequence,1)%    many states will be sorted into state matrix%    If zero: no washout accounted for, all states except the zero starting%    state will be sorted into state matrix%% outputs:% teachCollectMat = matrix of size (nOutputPoints - nForgetPoints) x% nOutputUnits% teachCollectMat contains the shifted and scaled output%% Version 1.0, April 30, 2006% Copyright: Fraunhofer IAIS 2006 / Patent pending% Revision 1, June 7, 2006, H.JaegernOutputPoints  = length(outputSequence(:,1)) ; teachCollectMat = zeros(nOutputPoints - max([0, nForgetPoints]), esn.nOutputUnits) ;% delete the first nForgetPoints elements from outputSequenceif nForgetPoints >= 0    outputSequence = outputSequence(nForgetPoints+1:end,:) ; end% update the size of outputSequencenOutputPoints  = length(outputSequence(:,1)) ; teachCollectMat = [(diag(esn.teacherScaling) * outputSequence')' + ...        repmat(esn.teacherShift',[nOutputPoints 1])];teachCollectMat = feval(esn.inverseOutputActivationFunction, teachCollectMat);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -