📄 模糊优化.lgr
字号:
Global optimal solution found at iteration: 0
Objective value: 1.752691
Variable Value Reduced Cost
C 4.769000 0.000000
E 127.2000 0.000000
RONGLIANG( 1) 40.00000 0.000000
RONGLIANG( 2) 50.00000 0.000000
RONGLIANG( 3) 60.00000 0.000000
RONGLIANG( 4) 70.00000 0.000000
RONGLIANG( 5) 80.00000 0.000000
RONGLIANG( 6) 90.00000 0.000000
RONGLIANG( 7) 100.0000 0.000000
RONGLIANG( 8) 110.0000 0.000000
RONGLIANG( 9) 120.0000 0.000000
X( 1, 1) 0.000000 0.000000
X( 1, 2) 0.000000 0.000000
X( 1, 3) 0.000000 10.18708
X( 1, 4) 1.000000 9.672207
X( 1, 5) 0.000000 9.189808
X( 1, 6) 0.000000 8.909207
X( 1, 7) 0.000000 8.850226
X( 1, 8) 0.000000 0.000000
X( 1, 9) 0.000000 0.000000
X( 2, 1) 0.000000 10.33646
X( 2, 2) 0.000000 9.809408
X( 2, 3) 1.000000 9.313917
X( 2, 4) 0.000000 8.923551
X( 2, 5) 0.000000 8.739271
X( 2, 6) 0.000000 0.000000
X( 2, 7) 0.000000 0.000000
X( 2, 8) 0.000000 0.000000
X( 2, 9) 0.000000 0.000000
X( 3, 1) 0.000000 0.000000
X( 3, 2) 0.000000 0.000000
X( 3, 3) 0.000000 0.000000
X( 3, 4) 0.000000 0.000000
X( 3, 5) 0.000000 8.849378
X( 3, 6) 0.000000 8.240744
X( 3, 7) 1.000000 7.624306
X( 3, 8) 0.000000 7.784254
X( 3, 9) 0.000000 7.599514
ZHICHU( 1, 1) 1000.000 0.000000
ZHICHU( 1, 2) 1000.000 0.000000
ZHICHU( 1, 3) 1.578000 0.000000
ZHICHU( 1, 4) 1.589000 0.000000
ZHICHU( 1, 5) 1.605000 0.000000
ZHICHU( 1, 6) 1.611700 0.000000
ZHICHU( 1, 7) 1.633500 0.000000
ZHICHU( 1, 8) 1000.000 0.000000
ZHICHU( 1, 9) 1000.000 0.000000
ZHICHU( 2, 1) 1.520000 0.000000
ZHICHU( 2, 2) 1.546000 0.000000
ZHICHU( 2, 3) 1.568000 0.000000
ZHICHU( 2, 4) 1.591000 0.000000
ZHICHU( 2, 5) 1.620000 0.000000
ZHICHU( 2, 6) 1000.000 0.000000
ZHICHU( 2, 7) 1000.000 0.000000
ZHICHU( 2, 8) 1000.000 0.000000
ZHICHU( 2, 9) 1000.000 0.000000
ZHICHU( 3, 1) 1000.000 0.000000
ZHICHU( 3, 2) 1000.000 0.000000
ZHICHU( 3, 3) 1000.000 0.000000
ZHICHU( 3, 4) 1000.000 0.000000
ZHICHU( 3, 5) 1.580000 0.000000
ZHICHU( 3, 6) 1.612000 0.000000
ZHICHU( 3, 7) 1.612000 0.000000
ZHICHU( 3, 8) 1.690000 0.000000
ZHICHU( 3, 9) 1.728000 0.000000
FADIAN( 1, 1) 0.000000 0.000000
FADIAN( 1, 2) 0.000000 0.000000
FADIAN( 1, 3) 32.00000 0.000000
FADIAN( 1, 4) 36.50000 0.000000
FADIAN( 1, 5) 41.10000 0.000000
FADIAN( 1, 6) 43.60000 0.000000
FADIAN( 1, 7) 45.50000 0.000000
FADIAN( 1, 8) 0.000000 0.000000
FADIAN( 1, 9) 0.000000 0.000000
FADIAN( 2, 1) 27.00000 0.000000
FADIAN( 2, 2) 32.60000 0.000000
FADIAN( 2, 3) 37.70000 0.000000
FADIAN( 2, 4) 42.10000 0.000000
FADIAN( 2, 5) 45.40000 0.000000
FADIAN( 2, 6) 0.000000 0.000000
FADIAN( 2, 7) 0.000000 0.000000
FADIAN( 2, 8) 0.000000 0.000000
FADIAN( 2, 9) 0.000000 0.000000
FADIAN( 3, 1) 0.000000 0.000000
FADIAN( 3, 2) 0.000000 0.000000
FADIAN( 3, 3) 0.000000 0.000000
FADIAN( 3, 4) 0.000000 0.000000
FADIAN( 3, 5) 41.90000 0.000000
FADIAN( 3, 6) 48.50000 0.000000
FADIAN( 3, 7) 53.00000 0.000000
FADIAN( 3, 8) 57.09000 0.000000
FADIAN( 3, 9) 61.00000 0.000000
Row Slack or Surplus Dual Price
1 0.000000 -9.233610
2 0.000000 0.1369863
3 1.752691 1.000000
4 0.000000 0.000000
5 0.000000 0.000000
6 0.000000 0.000000
7 0.000000 0.000000
8 0.000000 -9233.610
9 0.000000 -9233.610
10 0.000000 -9233.610
11 0.000000 -9233.610
12 0.000000 -9233.610
13 0.000000 -9233.610
14 0.000000 -9233.610
15 0.000000 -9233.610
16 0.000000 -9233.610
17 0.000000 -9233.610
18 0.000000 -9233.610
19 0.000000 -9233.610