📄 construct.c
字号:
#include "basic.h"#include <math.h>#include <string.h> /* for memset() */static int q_idx;static int tr_idx;/* Return a new node to be added into the query tree */static int newnode(){ if (q_idx < QSIZE) return q_idx++; else { fprintf(stderr, "newnode: Query-table overflow\n"); return -1; }}/* Return a free trapezoid */static int newtrap(){ if (tr_idx < TRSIZE) { tr[tr_idx].lseg = -1; tr[tr_idx].rseg = -1; tr[tr_idx].state = ST_VALID; return tr_idx++; } else { fprintf(stderr, "newtrap: Trapezoid-table overflow\n"); return -1; }}/* Return the maximum of the two points into the yval structure */static int _max(yval, v0, v1) point_t *yval; point_t *v0; point_t *v1;{ if (v0->y > v1->y + C_EPS) *yval = *v0; else if (FP_EQUAL(v0->y, v1->y)) { if (v0->x > v1->x + C_EPS) *yval = *v0; else *yval = *v1; } else *yval = *v1; return 0;}/* Return the minimum of the two points into the yval structure */static int _min(yval, v0, v1) point_t *yval; point_t *v0; point_t *v1;{ if (v0->y < v1->y - C_EPS) *yval = *v0; else if (FP_EQUAL(v0->y, v1->y)) { if (v0->x < v1->x) *yval = *v0; else *yval = *v1; } else *yval = *v1; return 0;}int _greater_than(v0, v1) point_t *v0; point_t *v1;{ if (v0->y > v1->y + C_EPS) return TRUE; else if (v0->y < v1->y - C_EPS) return FALSE; else return (v0->x > v1->x);}int _equal_to(v0, v1) point_t *v0; point_t *v1;{ return (FP_EQUAL(v0->y, v1->y) && FP_EQUAL(v0->x, v1->x));}int _greater_than_equal_to(v0, v1) point_t *v0; point_t *v1;{ if (v0->y > v1->y + C_EPS) return TRUE; else if (v0->y < v1->y - C_EPS) return FALSE; else return (v0->x >= v1->x);}int _less_than(v0, v1) point_t *v0; point_t *v1;{ if (v0->y < v1->y - C_EPS) return TRUE; else if (v0->y > v1->y + C_EPS) return FALSE; else return (v0->x < v1->x);}/* Initilialise the query structure (Q) and the trapezoid table (T) * when the first segment is added to start the trapezoidation */int init_query_structure(segnum) int segnum;{ int i1, i2, i3, i4, i5, i6, i7, root; int t1, t2, t3, t4; segment_t *s = &seg[segnum]; memset((void *)tr, 0, sizeof(tr)); memset((void *)qs, 0, sizeof(qs)); i1 = newnode(); qs[i1].nodetype = T_Y; _max(&qs[i1].yval, &s->v0, &s->v1); /* root */ root = i1; qs[i1].right = i2 = newnode(); qs[i2].nodetype = T_SINK; qs[i2].parent = i1; qs[i1].left = i3 = newnode(); qs[i3].nodetype = T_Y; _min(&qs[i3].yval, &s->v0, &s->v1); /* root */ qs[i3].parent = i1; qs[i3].left = i4 = newnode(); qs[i4].nodetype = T_SINK; qs[i4].parent = i3; qs[i3].right = i5 = newnode(); qs[i5].nodetype = T_X; qs[i5].segnum = segnum; qs[i5].parent = i3; qs[i5].left = i6 = newnode(); qs[i6].nodetype = T_SINK; qs[i6].parent = i5; qs[i5].right = i7 = newnode(); qs[i7].nodetype = T_SINK; qs[i7].parent = i5; t1 = newtrap(); /* middle left */ t2 = newtrap(); /* middle right */ t3 = newtrap(); /* bottom-most */ t4 = newtrap(); /* topmost */ tr[t1].hi = tr[t2].hi = tr[t4].lo = qs[i1].yval; tr[t1].lo = tr[t2].lo = tr[t3].hi = qs[i3].yval; tr[t4].hi.y = (double) (INFINITY); tr[t4].hi.x = (double) (INFINITY); tr[t3].lo.y = (double) -1* (INFINITY); tr[t3].lo.x = (double) -1* (INFINITY); tr[t1].rseg = tr[t2].lseg = segnum; tr[t1].u0 = tr[t2].u0 = t4; tr[t1].d0 = tr[t2].d0 = t3; tr[t4].d0 = tr[t3].u0 = t1; tr[t4].d1 = tr[t3].u1 = t2; tr[t1].sink = i6; tr[t2].sink = i7; tr[t3].sink = i4; tr[t4].sink = i2; tr[t1].state = tr[t2].state = ST_VALID; tr[t3].state = tr[t4].state = ST_VALID; qs[i2].trnum = t4; qs[i4].trnum = t3; qs[i6].trnum = t1; qs[i7].trnum = t2; s->is_inserted = TRUE; return root;}/* Retun TRUE if the vertex v is to the left of line segment no. * segnum */static int is_left_of(segnum, v) int segnum; point_t *v;{ segment_t *s = &seg[segnum]; double area; if (_greater_than(&s->v1, &s->v0)) /* seg. going upwards */ { if (FP_EQUAL(s->v1.y, v->y)) { if (v->x < s->v1.x) area = 1.0; else area = -1.0; } else if (FP_EQUAL(s->v0.y, v->y)) { if (v->x < s->v0.x) area = 1.0; else area = -1.0; } else area = CROSS(s->v0, s->v1, (*v)); } else /* v0 > v1 */ { if (FP_EQUAL(s->v1.y, v->y)) { if (v->x < s->v1.x) area = 1.0; else area = -1.0; } else if (FP_EQUAL(s->v0.y, v->y)) { if (v->x < s->v0.x) area = 1.0; else area = -1.0; } else area = CROSS(s->v1, s->v0, (*v)); } if (area > 0.0) return TRUE; else return FALSE;}int is_collinear(segnum, v, is_swapped) int segnum; point_t *v; int is_swapped;{ int n; /* First check if the endpoint is already inserted */ if (!is_swapped) n = MODULO_NEXT(segnum + 1, global.nseg); else if ((n = segnum - 1) == 0) n = 1; return seg[n].is_inserted;} /* This is query routine which determines which trapezoid does the * point v lie in. The return value is the trapezoid number */int locate_endpoint(v, vo, r) point_t *v; point_t *vo; int r;{ node_t *rptr = &qs[r]; switch (rptr->nodetype) { case T_SINK: return rptr->trnum; case T_Y: if (_greater_than(v, &rptr->yval)) /* above */ return locate_endpoint(v, vo, rptr->right); else if (_equal_to(v, &rptr->yval)) /* the point is already */ { /* inserted. */ if (_greater_than(vo, &rptr->yval)) /* above */ return locate_endpoint(v, vo, rptr->right); else return locate_endpoint(v, vo, rptr->left); /* below */ } else return locate_endpoint(v, vo, rptr->left); /* below */ case T_X: if (_equal_to(v, &seg[rptr->segnum].v0) || _equal_to(v, &seg[rptr->segnum].v1)) { if (FP_EQUAL(v->y, vo->y)) /* horizontal segment */ { if (vo->x < v->x) return locate_endpoint(v, vo, rptr->left); /* left */ else return locate_endpoint(v, vo, rptr->right); /* right */ } else if (is_left_of(rptr->segnum, vo)) return locate_endpoint(v, vo, rptr->left); /* left */ else return locate_endpoint(v, vo, rptr->right); /* right */ } else if (is_left_of(rptr->segnum, v)) return locate_endpoint(v, vo, rptr->left); /* left */ else return locate_endpoint(v, vo, rptr->right); /* right */ default: fprintf(stderr, "Haggu !!!!!\n"); break; }}/* Thread in the segment into the existing trapezoidation. The * limiting trapezoids are given by tfirst and tlast (which are the * trapezoids containing the two endpoints of the segment */int merge_trapezoids(segnum, tfirst, tlast, side) int segnum; int tfirst; int tlast; int side;{ int t, tnext, cond; int ptnext; /* First merge polys on the LHS */ t = tfirst; while ((t > 0) && _greater_than_equal_to(&tr[t].lo, &tr[tlast].lo)) { if (side == S_LEFT) cond = ((((tnext = tr[t].d0) > 0) && (tr[tnext].rseg == segnum)) || (((tnext = tr[t].d1) > 0) && (tr[tnext].rseg == segnum))); else cond = ((((tnext = tr[t].d0) > 0) && (tr[tnext].lseg == segnum)) || (((tnext = tr[t].d1) > 0) && (tr[tnext].lseg == segnum))); if (cond) { if ((tr[t].lseg == tr[tnext].lseg) && (tr[t].rseg == tr[tnext].rseg)) /* good neighbours */ { /* merge them */ /* Use the upper node as the new node i.e. t */ ptnext = qs[tr[tnext].sink].parent; if (qs[ptnext].left == tr[tnext].sink) qs[ptnext].left = tr[t].sink; else qs[ptnext].right = tr[t].sink; /* redirect parent */ /* Change the upper neighbours of the lower trapezoids */ if ((tr[t].d0 = tr[tnext].d0) > 0) if (tr[tr[t].d0].u0 == tnext) tr[tr[t].d0].u0 = t; else if (tr[tr[t].d0].u1 == tnext) tr[tr[t].d0].u1 = t; if ((tr[t].d1 = tr[tnext].d1) > 0) if (tr[tr[t].d1].u0 == tnext) tr[tr[t].d1].u0 = t; else if (tr[tr[t].d1].u1 == tnext) tr[tr[t].d1].u1 = t; tr[t].lo = tr[tnext].lo; tr[tnext].state = ST_INVALID; /* invalidate the lower */ /* trapezium */ } else /* not good neighbours */ t = tnext; } else /* do not satisfy the outer if */ t = tnext; } /* end-while */ return 0;}/* Add in the new segment into the trapezoidation and update Q and T * structures */int add_segment(segnum) int segnum;{ segment_t s; int tu, tl, sk, tfirst, tlast, tnext; int tfirstr, tlastr, tfirstl, tlastl; int i1, i2, t, tn; point_t vper, tpt; int tritop = 0, tribot = 0, is_swapped = 0; int tmptriseg; s = seg[segnum]; if (_greater_than(&s.v1, &s.v0)) /* Get higher vertex in v0 */ { int tmp; tpt = s.v0; s.v0 = s.v1; s.v1 = tpt; tmp = s.root0; s.root0 = s.root1; s.root1 = tmp; is_swapped = TRUE; } if ((is_swapped) ? !inserted(segnum, LASTPT) : !inserted(segnum, FIRSTPT)) /* insert v0 in the tree */ { int tmp_d; tu = locate_endpoint(&s.v0, &s.v1, s.root0); tl = newtrap(); /* tl is the new lower trapezoid */ tr[tl].state = ST_VALID; tr[tl] = tr[tu]; tr[tu].lo.y = tr[tl].hi.y = s.v0.y; tr[tu].lo.x = tr[tl].hi.x = s.v0.x; tr[tu].d0 = tl; tr[tu].d1 = 0; tr[tl].u0 = tu; tr[tl].u1 = 0; if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u0 == tu)) tr[tmp_d].u0 = tl; if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u1 == tu)) tr[tmp_d].u1 = tl; if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u0 == tu)) tr[tmp_d].u0 = tl; if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u1 == tu)) tr[tmp_d].u1 = tl; /* Now update the query structure and obtain the sinks for the */ /* two trapezoids */ i1 = newnode(); /* Upper trapezoid sink */ i2 = newnode(); /* Lower trapezoid sink */ sk = tr[tu].sink; qs[sk].nodetype = T_Y; qs[sk].yval = s.v0; qs[sk].segnum = segnum; /* not really reqd ... maybe later */ qs[sk].left = i2; qs[sk].right = i1; qs[i1].nodetype = T_SINK; qs[i1].trnum = tu; qs[i1].parent = sk; qs[i2].nodetype = T_SINK; qs[i2].trnum = tl; qs[i2].parent = sk; tr[tu].sink = i1; tr[tl].sink = i2; tfirst = tl; } else /* v0 already present */ { /* Get the topmost intersecting trapezoid */ vper.x = s.v0.x + EPS * (s.v1.x - s.v0.x); vper.y = s.v0.y + EPS * (s.v1.y - s.v0.y); tfirst = locate_endpoint(&s.v0, &s.v1, s.root0); tritop = 1; } if ((is_swapped) ? !inserted(segnum, FIRSTPT) : !inserted(segnum, LASTPT)) /* insert v1 in the tree */ { int tmp_d; tu = locate_endpoint(&s.v1, &s.v0, s.root1); tl = newtrap(); /* tl is the new lower trapezoid */ tr[tl].state = ST_VALID; tr[tl] = tr[tu]; tr[tu].lo.y = tr[tl].hi.y = s.v1.y; tr[tu].lo.x = tr[tl].hi.x = s.v1.x; tr[tu].d0 = tl; tr[tu].d1 = 0; tr[tl].u0 = tu; tr[tl].u1 = 0; if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u0 == tu)) tr[tmp_d].u0 = tl; if (((tmp_d = tr[tl].d0) > 0) && (tr[tmp_d].u1 == tu)) tr[tmp_d].u1 = tl; if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u0 == tu)) tr[tmp_d].u0 = tl; if (((tmp_d = tr[tl].d1) > 0) && (tr[tmp_d].u1 == tu)) tr[tmp_d].u1 = tl; /* Now update the query structure and obtain the sinks for the */ /* two trapezoids */ i1 = newnode(); /* Upper trapezoid sink */ i2 = newnode(); /* Lower trapezoid sink */ sk = tr[tu].sink; qs[sk].nodetype = T_Y;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -