📄 decompose.c
字号:
{#define TOL 1.0e-6 HMatrix Mk, MadjTk, Ek; float det, M_one, M_inf, MadjT_one, MadjT_inf, E_one, gamma, g1, g2; int i, j; mat_tpose(Mk,=,M,3); M_one = norm_one(Mk); M_inf = norm_inf(Mk); do { adjoint_transpose(Mk, MadjTk); det = vdot(Mk[0], MadjTk[0]); if (det==0.0) {do_rank2(Mk, MadjTk, Mk); break;} MadjT_one = norm_one(MadjTk); MadjT_inf = norm_inf(MadjTk); gamma = sqrt(sqrt((MadjT_one*MadjT_inf)/(M_one*M_inf))/fabs(det)); g1 = gamma*0.5; g2 = 0.5/(gamma*det); mat_copy(Ek,=,Mk,3); mat_binop(Mk,=,g1*Mk,+,g2*MadjTk,3); mat_copy(Ek,-=,Mk,3); E_one = norm_one(Ek); M_one = norm_one(Mk); M_inf = norm_inf(Mk); } while (E_one>(M_one*TOL)); mat_tpose(Q,=,Mk,3); mat_pad(Q); mat_mult(Mk, M, S); mat_pad(S); for (i=0; i<3; i++) for (j=i; j<3; j++) S[i][j] = S[j][i] = 0.5*(S[i][j]+S[j][i]); return (det);}/******* Spectral Decomposition *******//* Compute the spectral decomposition of symmetric positive semi-definite S. * Returns rotation in U and scale factors in result, so that if K is a diagonal * matrix of the scale factors, then S = U K (U transpose). Uses Jacobi method. * See Gene H. Golub and Charles F. Van Loan. Matrix Computations. Hopkins 1983. */HVect spect_decomp(HMatrix S, HMatrix U){ HVect kv; double Diag[3],OffD[3]; /* OffD is off-diag (by omitted index) */ double g,h,fabsh,fabsOffDi,t,theta,c,s,tau,ta,OffDq,a,b; static char nxt[] = {Y,Z,X}; int sweep, i, j; mat_copy(U,=,mat_id,4); Diag[X] = S[X][X]; Diag[Y] = S[Y][Y]; Diag[Z] = S[Z][Z]; OffD[X] = S[Y][Z]; OffD[Y] = S[Z][X]; OffD[Z] = S[X][Y]; for (sweep=20; sweep>0; sweep--) { float sm = fabs(OffD[X])+fabs(OffD[Y])+fabs(OffD[Z]); if (sm==0.0) break; for (i=Z; i>=X; i--) { int p = nxt[i]; int q = nxt[p]; fabsOffDi = fabs(OffD[i]); g = 100.0*fabsOffDi; if (fabsOffDi>0.0) { h = Diag[q] - Diag[p]; fabsh = fabs(h); if (fabsh+g==fabsh) { t = OffD[i]/h; } else { theta = 0.5*h/OffD[i]; t = 1.0/(fabs(theta)+sqrt(theta*theta+1.0)); if (theta<0.0) t = -t; } c = 1.0/sqrt(t*t+1.0); s = t*c; tau = s/(c+1.0); ta = t*OffD[i]; OffD[i] = 0.0; Diag[p] -= ta; Diag[q] += ta; OffDq = OffD[q]; OffD[q] -= s*(OffD[p] + tau*OffD[q]); OffD[p] += s*(OffDq - tau*OffD[p]); for (j=Z; j>=X; j--) { a = U[j][p]; b = U[j][q]; U[j][p] -= s*(b + tau*a); U[j][q] += s*(a - tau*b); } } } } kv.x = Diag[X]; kv.y = Diag[Y]; kv.z = Diag[Z]; kv.w = 1.0; return (kv);}/******* Spectral Axis Adjustment *******//* Given a unit quaternion, q, and a scale vector, k, find a unit quaternion, p, * which permutes the axes and turns freely in the plane of duplicate scale * factors, such that q p has the largest possible w component, i.e. the * smallest possible angle. Permutes k's components to go with q p instead of q. * See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition. * Proceedings of Graphics Interface 1992. Details on p. 262-263. */Quat snuggle(Quat q, HVect *k){#define SQRTHALF (0.7071067811865475244)#define sgn(n,v) ((n)?-(v):(v))#define swap(a,i,j) {a[3]=a[i]; a[i]=a[j]; a[j]=a[3];}#define cycle(a,p) if (p) {a[3]=a[0]; a[0]=a[1]; a[1]=a[2]; a[2]=a[3];}\ else {a[3]=a[2]; a[2]=a[1]; a[1]=a[0]; a[0]=a[3];} Quat p; float ka[4]; int i, turn = -1; ka[X] = k->x; ka[Y] = k->y; ka[Z] = k->z; if (ka[X]==ka[Y]) {if (ka[X]==ka[Z]) turn = W; else turn = Z;} else {if (ka[X]==ka[Z]) turn = Y; else if (ka[Y]==ka[Z]) turn = X;} if (turn>=0) { Quat qtoz, qp; unsigned neg[3], win; double mag[3], t; static Quat qxtoz = {0,SQRTHALF,0,SQRTHALF}; static Quat qytoz = {SQRTHALF,0,0,SQRTHALF}; static Quat qppmm = { 0.5, 0.5,-0.5,-0.5}; static Quat qpppp = { 0.5, 0.5, 0.5, 0.5}; static Quat qmpmm = {-0.5, 0.5,-0.5,-0.5}; static Quat qpppm = { 0.5, 0.5, 0.5,-0.5}; static Quat q0001 = { 0.0, 0.0, 0.0, 1.0}; static Quat q1000 = { 1.0, 0.0, 0.0, 0.0}; switch (turn) { default: return (Qt_Conj(q)); case X: q = Qt_Mul(q, qtoz = qxtoz); swap(ka,X,Z) break; case Y: q = Qt_Mul(q, qtoz = qytoz); swap(ka,Y,Z) break; case Z: qtoz = q0001; break; } q = Qt_Conj(q); mag[0] = (double)q.z*q.z+(double)q.w*q.w-0.5; mag[1] = (double)q.x*q.z-(double)q.y*q.w; mag[2] = (double)q.y*q.z+(double)q.x*q.w; for (i=0; i<3; i++) if (neg[i] = (mag[i]<0.0)) mag[i] = -mag[i]; if (mag[0]>mag[1]) {if (mag[0]>mag[2]) win = 0; else win = 2;} else {if (mag[1]>mag[2]) win = 1; else win = 2;} switch (win) { case 0: if (neg[0]) p = q1000; else p = q0001; break; case 1: if (neg[1]) p = qppmm; else p = qpppp; cycle(ka,0) break; case 2: if (neg[2]) p = qmpmm; else p = qpppm; cycle(ka,1) break; } qp = Qt_Mul(q, p); t = sqrt(mag[win]+0.5); p = Qt_Mul(p, Qt_(0.0,0.0,-qp.z/t,qp.w/t)); p = Qt_Mul(qtoz, Qt_Conj(p)); } else { float qa[4], pa[4]; unsigned lo, hi, neg[4], par = 0; double all, big, two; qa[0] = q.x; qa[1] = q.y; qa[2] = q.z; qa[3] = q.w; for (i=0; i<4; i++) { pa[i] = 0.0; if (neg[i] = (qa[i]<0.0)) qa[i] = -qa[i]; par ^= neg[i]; } /* Find two largest components, indices in hi and lo */ if (qa[0]>qa[1]) lo = 0; else lo = 1; if (qa[2]>qa[3]) hi = 2; else hi = 3; if (qa[lo]>qa[hi]) { if (qa[lo^1]>qa[hi]) {hi = lo; lo ^= 1;} else {hi ^= lo; lo ^= hi; hi ^= lo;} } else {if (qa[hi^1]>qa[lo]) lo = hi^1;} all = (qa[0]+qa[1]+qa[2]+qa[3])*0.5; two = (qa[hi]+qa[lo])*SQRTHALF; big = qa[hi]; if (all>two) { if (all>big) {/*all*/ {int i; for (i=0; i<4; i++) pa[i] = sgn(neg[i], 0.5);} cycle(ka,par) } else {/*big*/ pa[hi] = sgn(neg[hi],1.0);} } else { if (two>big) {/*two*/ pa[hi] = sgn(neg[hi],SQRTHALF); pa[lo] = sgn(neg[lo], SQRTHALF); if (lo>hi) {hi ^= lo; lo ^= hi; hi ^= lo;} if (hi==W) {hi = "\001\002\000"[lo]; lo = 3-hi-lo;} swap(ka,hi,lo) } else {/*big*/ pa[hi] = sgn(neg[hi],1.0);} } p.x = -pa[0]; p.y = -pa[1]; p.z = -pa[2]; p.w = pa[3]; } k->x = ka[X]; k->y = ka[Y]; k->z = ka[Z]; return (p);}/******* Decompose Affine Matrix *******//* Decompose 4x4 affine matrix A as TFRUK(U transpose), where t contains the * translation components, q contains the rotation R, u contains U, k contains * scale factors, and f contains the sign of the determinant. * Assumes A transforms column vectors in right-handed coordinates. * See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition. * Proceedings of Graphics Interface 1992. */void decomp_affine(HMatrix A, AffineParts *parts){ HMatrix Q, S, U; Quat p; float det; parts->t = Qt_(A[X][W], A[Y][W], A[Z][W], 0); det = polar_decomp(A, Q, S); if (det<0.0) { mat_copy(Q,=,-Q,3); parts->f = -1; } else parts->f = 1; parts->q = Qt_FromMatrix(Q); parts->k = spect_decomp(S, U); parts->u = Qt_FromMatrix(U); p = snuggle(parts->u, &parts->k); parts->u = Qt_Mul(parts->u, p);}/******* Invert Affine Decomposition *******//* Compute inverse of affine decomposition. */void invert_affine(AffineParts *parts, AffineParts *inverse){ Quat t, p; inverse->f = parts->f; inverse->q = Qt_Conj(parts->q); inverse->u = Qt_Mul(parts->q, parts->u); inverse->k.x = (parts->k.x==0.0) ? 0.0 : 1.0/parts->k.x; inverse->k.y = (parts->k.y==0.0) ? 0.0 : 1.0/parts->k.y; inverse->k.z = (parts->k.z==0.0) ? 0.0 : 1.0/parts->k.z; inverse->k.w = parts->k.w; t = Qt_(-parts->t.x, -parts->t.y, -parts->t.z, 0); t = Qt_Mul(Qt_Conj(inverse->u), Qt_Mul(t, inverse->u)); t = Qt_(inverse->k.x*t.x, inverse->k.y*t.y, inverse->k.z*t.z, 0); p = Qt_Mul(inverse->q, inverse->u); t = Qt_Mul(p, Qt_Mul(t, Qt_Conj(p))); inverse->t = (inverse->f>0.0) ? t : Qt_(-t.x, -t.y, -t.z, 0);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -