📄 eulerangles.c
字号:
/**** EulerAngles.c - Convert Euler angles to/from matrix or quat ****//* Ken Shoemake, 1993 */#include <math.h>#include <float.h>#include "EulerAngles.h"EulerAngles Eul_(float ai, float aj, float ah, int order){ EulerAngles ea; ea.x = ai; ea.y = aj; ea.z = ah; ea.w = order; return (ea);}/* Construct quaternion from Euler angles (in radians). */Quat Eul_ToQuat(EulerAngles ea){ Quat qu; double a[3], ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss; int i,j,k,h,n,s,f; EulGetOrd(ea.w,i,j,k,h,n,s,f); if (f==EulFrmR) {float t = ea.x; ea.x = ea.z; ea.z = t;} if (n==EulParOdd) ea.y = -ea.y; ti = ea.x*0.5; tj = ea.y*0.5; th = ea.z*0.5; ci = cos(ti); cj = cos(tj); ch = cos(th); si = sin(ti); sj = sin(tj); sh = sin(th); cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh; if (s==EulRepYes) { a[i] = cj*(cs + sc); /* Could speed up with */ a[j] = sj*(cc + ss); /* trig identities. */ a[k] = sj*(cs - sc); qu.w = cj*(cc - ss); } else { a[i] = cj*sc - sj*cs; a[j] = cj*ss + sj*cc; a[k] = cj*cs - sj*sc; qu.w = cj*cc + sj*ss; } if (n==EulParOdd) a[j] = -a[j]; qu.x = a[X]; qu.y = a[Y]; qu.z = a[Z]; return (qu);}/* Construct matrix from Euler angles (in radians). */void Eul_ToHMatrix(EulerAngles ea, HMatrix M){ double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss; int i,j,k,h,n,s,f; EulGetOrd(ea.w,i,j,k,h,n,s,f); if (f==EulFrmR) {float t = ea.x; ea.x = ea.z; ea.z = t;} if (n==EulParOdd) {ea.x = -ea.x; ea.y = -ea.y; ea.z = -ea.z;} ti = ea.x; tj = ea.y; th = ea.z; ci = cos(ti); cj = cos(tj); ch = cos(th); si = sin(ti); sj = sin(tj); sh = sin(th); cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh; if (s==EulRepYes) { M[i][i] = cj; M[i][j] = sj*si; M[i][k] = sj*ci; M[j][i] = sj*sh; M[j][j] = -cj*ss+cc; M[j][k] = -cj*cs-sc; M[k][i] = -sj*ch; M[k][j] = cj*sc+cs; M[k][k] = cj*cc-ss; } else { M[i][i] = cj*ch; M[i][j] = sj*sc-cs; M[i][k] = sj*cc+ss; M[j][i] = cj*sh; M[j][j] = sj*ss+cc; M[j][k] = sj*cs-sc; M[k][i] = -sj; M[k][j] = cj*si; M[k][k] = cj*ci; } M[W][X]=M[W][Y]=M[W][Z]=M[X][W]=M[Y][W]=M[Z][W]=0.0; M[W][W]=1.0;}/* Convert matrix to Euler angles (in radians). */EulerAngles Eul_FromHMatrix(HMatrix M, int order){ EulerAngles ea; int i,j,k,h,n,s,f; EulGetOrd(order,i,j,k,h,n,s,f); if (s==EulRepYes) { double sy = sqrt(M[i][j]*M[i][j] + M[i][k]*M[i][k]); if (sy > 16*FLT_EPSILON) { ea.x = atan2(M[i][j], M[i][k]); ea.y = atan2(sy, M[i][i]); ea.z = atan2(M[j][i], -M[k][i]); } else { ea.x = atan2(-M[j][k], M[j][j]); ea.y = atan2(sy, M[i][i]); ea.z = 0; } } else { double cy = sqrt(M[i][i]*M[i][i] + M[j][i]*M[j][i]); if (cy > 16*FLT_EPSILON) { ea.x = atan2(M[k][j], M[k][k]); ea.y = atan2(-M[k][i], cy); ea.z = atan2(M[j][i], M[i][i]); } else { ea.x = atan2(-M[j][k], M[j][j]); ea.y = atan2(-M[k][i], cy); ea.z = 0; } } if (n==EulParOdd) {ea.x = -ea.x; ea.y = - ea.y; ea.z = -ea.z;} if (f==EulFrmR) {float t = ea.x; ea.x = ea.z; ea.z = t;} ea.w = order; return (ea);}/* Convert quaternion to Euler angles (in radians). */EulerAngles Eul_FromQuat(Quat q, int order){ HMatrix M; double Nq = q.x*q.x+q.y*q.y+q.z*q.z+q.w*q.w; double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0; double xs = q.x*s, ys = q.y*s, zs = q.z*s; double wx = q.w*xs, wy = q.w*ys, wz = q.w*zs; double xx = q.x*xs, xy = q.x*ys, xz = q.x*zs; double yy = q.y*ys, yz = q.y*zs, zz = q.z*zs; M[X][X] = 1.0 - (yy + zz); M[X][Y] = xy - wz; M[X][Z] = xz + wy; M[Y][X] = xy + wz; M[Y][Y] = 1.0 - (xx + zz); M[Y][Z] = yz - wx; M[Z][X] = xz - wy; M[Z][Y] = yz + wx; M[Z][Z] = 1.0 - (xx + yy); M[W][X]=M[W][Y]=M[W][Z]=M[X][W]=M[Y][W]=M[Z][W]=0.0; M[W][W]=1.0; return (Eul_FromHMatrix(M, order));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -