📄 ballaux.c
字号:
/***** BallAux.c *****/#include <math.h>#include "BallAux.h"Quat qOne = {0, 0, 0, 1};/* Return quaternion product qL * qR. Note: order is important! * To combine rotations, use the product Mul(qSecond, qFirst), * which gives the effect of rotating by qFirst then qSecond. */Quat Qt_Mul(Quat qL, Quat qR){ Quat qq; qq.w = qL.w*qR.w - qL.x*qR.x - qL.y*qR.y - qL.z*qR.z; qq.x = qL.w*qR.x + qL.x*qR.w + qL.y*qR.z - qL.z*qR.y; qq.y = qL.w*qR.y + qL.y*qR.w + qL.z*qR.x - qL.x*qR.z; qq.z = qL.w*qR.z + qL.z*qR.w + qL.x*qR.y - qL.y*qR.x; return (qq);}/* Construct rotation matrix from (possibly non-unit) quaternion. * Assumes matrix is used to multiply column vector on the left: * vnew = mat vold. Works correctly for right-handed coordinate system * and right-handed rotations. */HMatrix *Qt_ToMatrix(Quat q, HMatrix out){ double Nq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w; double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0; double xs = q.x*s, ys = q.y*s, zs = q.z*s; double wx = q.w*xs, wy = q.w*ys, wz = q.w*zs; double xx = q.x*xs, xy = q.x*ys, xz = q.x*zs; double yy = q.y*ys, yz = q.y*zs, zz = q.z*zs; out[X][X] = 1.0 - (yy + zz); out[Y][X] = xy + wz; out[Z][X] = xz - wy; out[X][Y] = xy - wz; out[Y][Y] = 1.0 - (xx + zz); out[Z][Y] = yz + wx; out[X][Z] = xz + wy; out[Y][Z] = yz - wx; out[Z][Z] = 1.0 - (xx + yy); out[X][W] = out[Y][W] = out[Z][W] = out[W][X] = out[W][Y] = out[W][Z] = 0.0; out[W][W] = 1.0; return ((HMatrix *)&out);}/* Return conjugate of quaternion. */Quat Qt_Conj(Quat q){ Quat qq; qq.x = -q.x; qq.y = -q.y; qq.z = -q.z; qq.w = q.w; return (qq);}/* Return vector formed from components */HVect V3_(float x, float y, float z){ HVect v; v.x = x; v.y = y; v.z = z; v.w = 0; return (v);}/* Return norm of v, defined as sum of squares of components */float V3_Norm(HVect v){ return ( v.x*v.x + v.y*v.y + v.z*v.z );}/* Return unit magnitude vector in direction of v */HVect V3_Unit(HVect v){ static HVect u = {0, 0, 0, 0}; float vlen = sqrt(V3_Norm(v)); if (vlen != 0.0) { u.x = v.x/vlen; u.y = v.y/vlen; u.z = v.z/vlen; } return (u);}/* Return version of v scaled by s */HVect V3_Scale(HVect v, float s){ HVect u; u.x = s*v.x; u.y = s*v.y; u.z = s*v.z; u.w = v.w; return (u);}/* Return negative of v */HVect V3_Negate(HVect v){ static HVect u = {0, 0, 0, 0}; u.x = -v.x; u.y = -v.y; u.z = -v.z; return (u);}/* Return sum of v1 and v2 */HVect V3_Add(HVect v1, HVect v2){ static HVect v = {0, 0, 0, 0}; v.x = v1.x+v2.x; v.y = v1.y+v2.y; v.z = v1.z+v2.z; return (v);}/* Return difference of v1 minus v2 */HVect V3_Sub(HVect v1, HVect v2){ static HVect v = {0, 0, 0, 0}; v.x = v1.x-v2.x; v.y = v1.y-v2.y; v.z = v1.z-v2.z; return (v);}/* Halve arc between unit vectors v0 and v1. */HVect V3_Bisect(HVect v0, HVect v1){ HVect v = {0, 0, 0, 0}; float Nv; v = V3_Add(v0, v1); Nv = V3_Norm(v); if (Nv < 1.0e-5) { v = V3_(0, 0, 1); } else { v = V3_Scale(v, 1/sqrt(Nv)); } return (v);}/* Return dot product of v1 and v2 */float V3_Dot(HVect v1, HVect v2){ return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);}/* Return cross product, v1 x v2 */HVect V3_Cross(HVect v1, HVect v2){ static HVect v = {0, 0, 0, 0}; v.x = v1.y*v2.z-v1.z*v2.y; v.y = v1.z*v2.x-v1.x*v2.z; v.z = v1.x*v2.y-v1.y*v2.x; return (v);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -