📄 stl_slist.h
字号:
_Node* _M_create_node() { _Node* __node = this->_M_get_node(); __STL_TRY { construct(&__node->_M_data); __node->_M_next = 0; } __STL_UNWIND(this->_M_put_node(__node)); return __node; }public: explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {} slist(size_type __n, const value_type& __x, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_insert_after_fill(&this->_M_head, __n, __x); } explicit slist(size_type __n) : _Base(allocator_type()) { _M_insert_after_fill(&this->_M_head, __n, value_type()); }#ifdef __STL_MEMBER_TEMPLATES // We don't need any dispatching tricks here, because _M_insert_after_range // already does them. template <class _InputIterator> slist(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_insert_after_range(&this->_M_head, __first, __last); }#else /* __STL_MEMBER_TEMPLATES */ slist(const_iterator __first, const_iterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_insert_after_range(&this->_M_head, __first, __last); } slist(const value_type* __first, const value_type* __last, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_insert_after_range(&this->_M_head, __first, __last); }#endif /* __STL_MEMBER_TEMPLATES */ slist(const slist& __x) : _Base(__x.get_allocator()) { _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); } slist& operator= (const slist& __x); ~slist() {}public: // assign(), a generalized assignment member function. Two // versions: one that takes a count, and one that takes a range. // The range version is a member template, so we dispatch on whether // or not the type is an integer. void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); } void _M_fill_assign(size_type __n, const _Tp& __val);#ifdef __STL_MEMBER_TEMPLATES template <class _InputIterator> void assign(_InputIterator __first, _InputIterator __last) { typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_assign_dispatch(__first, __last, _Integral()); } template <class _Integer> void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign((size_type) __n, (_Tp) __val); } template <class _InputIterator> void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type);#endif /* __STL_MEMBER_TEMPLATES */public: iterator begin() { return iterator((_Node*)this->_M_head._M_next); } const_iterator begin() const { return const_iterator((_Node*)this->_M_head._M_next);} iterator end() { return iterator(0); } const_iterator end() const { return const_iterator(0); } // Experimental new feature: before_begin() returns a // non-dereferenceable iterator that, when incremented, yields // begin(). This iterator may be used as the argument to // insert_after, erase_after, etc. Note that even for an empty // slist, before_begin() is not the same iterator as end(). It // is always necessary to increment before_begin() at least once to // obtain end(). iterator before_begin() { return iterator((_Node*) &this->_M_head); } const_iterator before_begin() const { return const_iterator((_Node*) &this->_M_head); } size_type size() const { return __slist_size(this->_M_head._M_next); } size_type max_size() const { return size_type(-1); } bool empty() const { return this->_M_head._M_next == 0; } void swap(slist& __x) { __STD::swap(this->_M_head._M_next, __x._M_head._M_next); }public: reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; } const_reference front() const { return ((_Node*) this->_M_head._M_next)->_M_data; } void push_front(const value_type& __x) { __slist_make_link(&this->_M_head, _M_create_node(__x)); } void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); } void pop_front() { _Node* __node = (_Node*) this->_M_head._M_next; this->_M_head._M_next = __node->_M_next; destroy(&__node->_M_data); this->_M_put_node(__node); } iterator previous(const_iterator __pos) { return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node)); } const_iterator previous(const_iterator __pos) const { return const_iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node)); }private: _Node* _M_insert_after(_Node_base* __pos, const value_type& __x) { return (_Node*) (__slist_make_link(__pos, _M_create_node(__x))); } _Node* _M_insert_after(_Node_base* __pos) { return (_Node*) (__slist_make_link(__pos, _M_create_node())); } void _M_insert_after_fill(_Node_base* __pos, size_type __n, const value_type& __x) { for (size_type __i = 0; __i < __n; ++__i) __pos = __slist_make_link(__pos, _M_create_node(__x)); }#ifdef __STL_MEMBER_TEMPLATES // Check whether it's an integral type. If so, it's not an iterator. template <class _InIter> void _M_insert_after_range(_Node_base* __pos, _InIter __first, _InIter __last) { typedef typename _Is_integer<_InIter>::_Integral _Integral; _M_insert_after_range(__pos, __first, __last, _Integral()); } template <class _Integer> void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x, __true_type) { _M_insert_after_fill(__pos, __n, __x); } template <class _InIter> void _M_insert_after_range(_Node_base* __pos, _InIter __first, _InIter __last, __false_type) { while (__first != __last) { __pos = __slist_make_link(__pos, _M_create_node(*__first)); ++__first; } }#else /* __STL_MEMBER_TEMPLATES */ void _M_insert_after_range(_Node_base* __pos, const_iterator __first, const_iterator __last) { while (__first != __last) { __pos = __slist_make_link(__pos, _M_create_node(*__first)); ++__first; } } void _M_insert_after_range(_Node_base* __pos, const value_type* __first, const value_type* __last) { while (__first != __last) { __pos = __slist_make_link(__pos, _M_create_node(*__first)); ++__first; } }#endif /* __STL_MEMBER_TEMPLATES */public: iterator insert_after(iterator __pos, const value_type& __x) { return iterator(_M_insert_after(__pos._M_node, __x)); } iterator insert_after(iterator __pos) { return insert_after(__pos, value_type()); } void insert_after(iterator __pos, size_type __n, const value_type& __x) { _M_insert_after_fill(__pos._M_node, __n, __x); }#ifdef __STL_MEMBER_TEMPLATES // We don't need any dispatching tricks here, because _M_insert_after_range // already does them. template <class _InIter> void insert_after(iterator __pos, _InIter __first, _InIter __last) { _M_insert_after_range(__pos._M_node, __first, __last); }#else /* __STL_MEMBER_TEMPLATES */ void insert_after(iterator __pos, const_iterator __first, const_iterator __last) { _M_insert_after_range(__pos._M_node, __first, __last); } void insert_after(iterator __pos, const value_type* __first, const value_type* __last) { _M_insert_after_range(__pos._M_node, __first, __last); }#endif /* __STL_MEMBER_TEMPLATES */ iterator insert(iterator __pos, const value_type& __x) { return iterator(_M_insert_after(__slist_previous(&this->_M_head, __pos._M_node), __x)); } iterator insert(iterator __pos) { return iterator(_M_insert_after(__slist_previous(&this->_M_head, __pos._M_node), value_type())); } void insert(iterator __pos, size_type __n, const value_type& __x) { _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node), __n, __x); } #ifdef __STL_MEMBER_TEMPLATES // We don't need any dispatching tricks here, because _M_insert_after_range // already does them. template <class _InIter> void insert(iterator __pos, _InIter __first, _InIter __last) { _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node), __first, __last); }#else /* __STL_MEMBER_TEMPLATES */ void insert(iterator __pos, const_iterator __first, const_iterator __last) { _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node), __first, __last); } void insert(iterator __pos, const value_type* __first, const value_type* __last) { _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node), __first, __last); }#endif /* __STL_MEMBER_TEMPLATES */public: iterator erase_after(iterator __pos) { return iterator((_Node*) this->_M_erase_after(__pos._M_node)); } iterator erase_after(iterator __before_first, iterator __last) { return iterator((_Node*) this->_M_erase_after(__before_first._M_node, __last._M_node)); } iterator erase(iterator __pos) { return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head, __pos._M_node)); } iterator erase(iterator __first, iterator __last) { return (_Node*) this->_M_erase_after( __slist_previous(&this->_M_head, __first._M_node), __last._M_node); } void resize(size_type new_size, const _Tp& __x); void resize(size_type new_size) { resize(new_size, _Tp()); } void clear() { this->_M_erase_after(&this->_M_head, 0); }public: // Moves the range [__before_first + 1, __before_last + 1) to *this, // inserting it immediately after __pos. This is constant time. void splice_after(iterator __pos, iterator __before_first, iterator __before_last) { if (__before_first != __before_last) __slist_splice_after(__pos._M_node, __before_first._M_node, __before_last._M_node); } // Moves the element that follows __prev to *this, inserting it immediately // after __pos. This is constant time. void splice_after(iterator __pos, iterator __prev) { __slist_splice_after(__pos._M_node, __prev._M_node, __prev._M_node->_M_next); } // Removes all of the elements from the list __x to *this, inserting // them immediately after __pos. __x must not be *this. Complexity: // linear in __x.size(). void splice_after(iterator __pos, slist& __x) { __slist_splice_after(__pos._M_node, &__x._M_head); } // Linear in distance(begin(), __pos), and linear in __x.size(). void splice(iterator __pos, slist& __x) { if (__x._M_head._M_next) __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node), &__x._M_head, __slist_previous(&__x._M_head, 0)); } // Linear in distance(begin(), __pos), and in distance(__x.begin(), __i). void splice(iterator __pos, slist& __x, iterator __i) { __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node), __slist_previous(&__x._M_head, __i._M_node), __i._M_node); } // Linear in distance(begin(), __pos), in distance(__x.begin(), __first), // and in distance(__first, __last). void splice(iterator __pos, slist& __x, iterator __first, iterator __last) { if (__first != __last) __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node), __slist_previous(&__x._M_head, __first._M_node), __slist_previous(__first._M_node, __last._M_node)); }public: void reverse() { if (this->_M_head._M_next) this->_M_head._M_next = __slist_reverse(this->_M_head._M_next); } void remove(const _Tp& __val); void unique(); void merge(slist& __x);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -