📄 output.cpp
字号:
// -----------------------------------------------------------------------------
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
// Copyright (c) 1995-2000 Microsoft Corporation. All rights reserved.
//
// -----------------------------------------------------------------------------
#include "wavemain.h"
HRESULT OutputStreamContext::Open(DeviceContext *pDeviceContext, LPWAVEOPENDESC lpWOD, DWORD dwFlags)
{
HRESULT Result;
Result = WaveStreamContext::Open(pDeviceContext, lpWOD, dwFlags);
if (Result==MMSYSERR_NOERROR)
{
// Note: Output streams should be initialized in the run state.
Run();
}
return Result;
}
DWORD OutputStreamContext::Reset()
{
HRESULT Result;
Result = WaveStreamContext::Reset();
if (Result==MMSYSERR_NOERROR)
{
// Note: Output streams should be reset to the run state.
Run();
}
return Result;
};
// Init m_DeltaT with (SampleRate/HWSampleRate) calculated in 24.8 fixed point form
// Note that we need to hold the result in a 64-bit value until we're done shifting,
// since the result of the multiply will overflow 32 bits for sample rates greater than
// or equal to the hardware's sample rate.
DWORD OutputStreamContext::SetRate(DWORD dwMultiplier)
{
m_dwMultiplier = dwMultiplier;
UINT64 Delta = (m_WaveFormat.nSamplesPerSec * m_dwMultiplier) >> 16;
Delta = (Delta * INVSAMPLERATE) >> 24; // Convert to 24.8 format
m_DeltaT = (DWORD)Delta;
return MMSYSERR_NOERROR;
}
// Originally, this code used to be in each renderer, and each one would call GetNextBuffer as needed.
// Pulling this code out of each low level renderer allows the inner loop to be in a leaf routine (ie no
// subroutine calls out of that routine), which helps the compiler optimize the inner loop.
PBYTE WaveStreamContext::Render(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast)
{
if (!m_bRunning || !m_lpCurrData)
{
return pBuffer;
}
while (pBuffer < pBufferEnd)
{
while (m_lpCurrData>=m_lpCurrDataEnd)
{
if (!GetNextBuffer())
{
return pBuffer;
}
}
pBuffer = Render2(pBuffer,pBufferEnd,pBufferLast);
}
return pBuffer;
}
PBYTE OutputStreamContextM8::Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast)
{
LONG CurrT = m_CurrT;
LONG DeltaT = m_DeltaT;
LONG CurrSamp0 = m_CurrSamp[0];
LONG PrevSamp0 = m_PrevSamp[0];
PBYTE pCurrData = m_lpCurrData;
PBYTE pCurrDataEnd = m_lpCurrDataEnd;
LONG fxpGain = m_fxpGain;
while (pBuffer < pBufferEnd)
{
while (CurrT >= 0x100)
{
if (pCurrData>=pCurrDataEnd)
{
goto Exit;
}
CurrT -= 0x100;
PrevSamp0 = CurrSamp0;
PPCM_SAMPLE pSampleSrc = (PPCM_SAMPLE)pCurrData;
CurrSamp0 = (LONG)pSampleSrc->m8.sample;
CurrSamp0 = (CurrSamp0 - 128) << 8;
pCurrData+=1;
}
LONG OutSamp0;
OutSamp0 = PrevSamp0 + (((CurrSamp0 - PrevSamp0) * CurrT) >> 8);
OutSamp0 = (OutSamp0 * fxpGain) >> VOLSHIFT;
CurrT += DeltaT;
#if (OUTCHANNELS==2)
LONG OutSamp1;
OutSamp1=OutSamp0;
if (pBuffer < pBufferLast)
{
OutSamp0 += ((HWSAMPLE *)pBuffer)[0];
OutSamp1 += ((HWSAMPLE *)pBuffer)[1];
#if USE_MIX_SATURATE
// Handle saturation
if (OutSamp0>AUDIO_SAMPLE_MAX)
{
OutSamp0=AUDIO_SAMPLE_MAX;
}
else if (OutSamp0<AUDIO_SAMPLE_MIN)
{
OutSamp0=AUDIO_SAMPLE_MIN;
}
if (OutSamp1>AUDIO_SAMPLE_MAX)
{
OutSamp1=AUDIO_SAMPLE_MAX;
}
else if (OutSamp1<AUDIO_SAMPLE_MIN)
{
OutSamp1=AUDIO_SAMPLE_MIN;
}
#endif
}
((HWSAMPLE *)pBuffer)[0] = (HWSAMPLE)OutSamp0;
((HWSAMPLE *)pBuffer)[1] = (HWSAMPLE)OutSamp1;
pBuffer += 2*sizeof(HWSAMPLE);
#else
if (pBuffer < pBufferLast)
{
OutSamp0 += ((HWSAMPLE *)pBuffer)[0];
#if USE_MIX_SATURATE
// Handle saturation
if (OutSamp0>AUDIO_SAMPLE_MAX)
{
OutSamp0=AUDIO_SAMPLE_MAX;
}
else if (OutSamp0<AUDIO_SAMPLE_MIN)
{
OutSamp0=AUDIO_SAMPLE_MIN;
}
#endif
}
((HWSAMPLE *)pBuffer)[0] = (HWSAMPLE)OutSamp0;
pBuffer += sizeof(HWSAMPLE);
#endif
}
Exit:
m_dwByteCount += (pCurrData - m_lpCurrData);
m_lpCurrData = pCurrData;
m_CurrT = CurrT;
m_PrevSamp[0] = PrevSamp0;
m_CurrSamp[0] = CurrSamp0;
return pBuffer;
}
PBYTE OutputStreamContextM16::Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast)
{
LONG CurrT = m_CurrT;
LONG DeltaT = m_DeltaT;
LONG CurrSamp0 = m_CurrSamp[0];
LONG PrevSamp0 = m_PrevSamp[0];
PBYTE pCurrData = m_lpCurrData;
PBYTE pCurrDataEnd = m_lpCurrDataEnd;
LONG fxpGain = m_fxpGain;
LONG OutSamp0;
while (pBuffer < pBufferEnd)
{
while (CurrT >= 0x100)
{
if (pCurrData>=pCurrDataEnd)
{
goto Exit;
}
CurrT -= 0x100;
PrevSamp0 = CurrSamp0;
PPCM_SAMPLE pSampleSrc = (PPCM_SAMPLE)pCurrData;
CurrSamp0 = (LONG)pSampleSrc->m16.sample;
pCurrData+=2;
}
OutSamp0 = PrevSamp0 + (((CurrSamp0 - PrevSamp0) * CurrT) >> 8);
OutSamp0 = (OutSamp0 * fxpGain) >> VOLSHIFT;
CurrT += DeltaT;
// DEBUGMSG(1, (TEXT("PrevSamp0=0x%x, CurrSamp0=0x%x, CurrT=0x%x, OutSamp0=0x%x\r\n"), PrevSamp0,CurrSamp0,CurrT,OutSamp0));
#if (OUTCHANNELS==2)
LONG OutSamp1;
OutSamp1=OutSamp0;
if (pBuffer < pBufferLast)
{
OutSamp0 += ((HWSAMPLE *)pBuffer)[0];
OutSamp1 += ((HWSAMPLE *)pBuffer)[1];
#if USE_MIX_SATURATE
// Handle saturation
if (OutSamp0>AUDIO_SAMPLE_MAX)
{
OutSamp0=AUDIO_SAMPLE_MAX;
}
else if (OutSamp0<AUDIO_SAMPLE_MIN)
{
OutSamp0=AUDIO_SAMPLE_MIN;
}
if (OutSamp1>AUDIO_SAMPLE_MAX)
{
OutSamp1=AUDIO_SAMPLE_MAX;
}
else if (OutSamp1<AUDIO_SAMPLE_MIN)
{
OutSamp1=AUDIO_SAMPLE_MIN;
}
#endif
}
((HWSAMPLE *)pBuffer)[0] = (HWSAMPLE)OutSamp0;
((HWSAMPLE *)pBuffer)[1] = (HWSAMPLE)OutSamp1;
pBuffer += 2*sizeof(HWSAMPLE);
#else
if (pBuffer < pBufferLast)
{
OutSamp0 += ((HWSAMPLE *)pBuffer)[0];
#if USE_MIX_SATURATE
// Handle saturation
if (OutSamp0>AUDIO_SAMPLE_MAX)
{
OutSamp0=AUDIO_SAMPLE_MAX;
}
else if (OutSamp0<AUDIO_SAMPLE_MIN)
{
OutSamp0=AUDIO_SAMPLE_MIN;
}
#endif
}
((HWSAMPLE *)pBuffer)[0] = (HWSAMPLE)OutSamp0;
pBuffer += sizeof(HWSAMPLE);
#endif
}
Exit:
m_dwByteCount += (pCurrData - m_lpCurrData);
m_lpCurrData = pCurrData;
m_CurrT = CurrT;
m_PrevSamp[0] = PrevSamp0;
m_CurrSamp[0] = CurrSamp0;
return pBuffer;
}
#if (OUTCHANNELS==2)
PBYTE OutputStreamContextS8::Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast)
{
LONG CurrT = m_CurrT;
LONG DeltaT = m_DeltaT;
LONG CurrSamp0 = m_CurrSamp[0];
LONG CurrSamp1 = m_CurrSamp[1];
LONG PrevSamp0 = m_PrevSamp[0];
LONG PrevSamp1 = m_PrevSamp[1];
PBYTE pCurrData = m_lpCurrData;
PBYTE pCurrDataEnd = m_lpCurrDataEnd;
LONG fxpGain = m_fxpGain;
LONG OutSamp0;
LONG OutSamp1;
while (pBuffer < pBufferEnd)
{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -