📄 trrqr.m
字号:
function x_trrqr = trrqr(Q,R,Pi,p,b)% trrqr --> Solves a least squares problem using the RRQR decomposition.%% <Synopsis>% x_trrqr = trrqr(Q,R,Pi,p,b)%% <Description>% Solves the near-rank deficient least squares problem%% min_x || b-A*x ||_2%% using the RRQR decomposition. Here, A*Pi = Q*R is the RRQR% decomposition of A, p is the numerical rank of A, and the% TRRQR solution is defined by%% x_trrqr = Pi(:,1:p)*inv(R(1:p,1:p))*Q(:,1:p)'*b.%% <See Also>% tulv --> Solves a least squares problem using the ULV decomposition.% turv --> Solves a least squares problem using the URV decomposition.% <Revision>% Ricardo D. Fierro, California State University San Marcos% Per Christian Hansen, IMM, Technical University of Denmark% Peter S.K. Hansen, IMM, Technical University of Denmark%% Last revised: June 22, 1999%-----------------------------------------------------------------------% Need the pseudoinverse of R(1:p,:); get it via QR factorization.[P,RR] = qr(R(1:p,:)',0);% Transform right hand side.beta = Q(:,1:p)'*b;% Back-substitution.y = (RR')\beta;% Compute TRRQR solution.x_trrqr = Pi*(P*y);%-----------------------------------------------------------------------% End of function trrqr%-----------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -