📄 rrqrdemo.m
字号:
function rrqrdemo% rrqrdemo --> Demonstrates high- and low-rank RRQR algorithms.% <Revision>% Per Christian Hansen, IMM, Technical University of Denmark% Peter S. K. Hansen, IMM, Technical University of Denmark%% Last revised: June 22, 1999%-----------------------------------------------------------------------fprintf(1,'. \n');fprintf(1,'. The purpose of RRQRDEMO is to demonstrate the high- \n');fprintf(1,'. and low-rank RRQR algorithms in HRRQR and LRRQR. \n');fprintf(1,'. \n');input('. [Press RETURN to continue]');fprintf(1,'. \n');format short e;% Test matrix generation.m = 50;n = 20;randn('seed',100);A = randn(m,n);numrank = 13;[u,s,v] = svd(A);s1 = 2*logspace(1,-3,numrank);s2 = 5*logspace(-5,-8,n-numrank);s(1:n,:) = diag([s1,s2]);A = u*s*v';% Define input parameters.tol_rank = 0.001;fprintf(1,'. \n');fprintf(1,'. Input parameters to HRRQR and LRRQR \n');fprintf(1,'............................................................\n');fprintf(1,'. no. rows m of A = %3.0f \n',m);fprintf(1,'. no. cols n of A = %3.0f \n',n);fprintf(1,'. rank tolerance (tol_rank) = %6.4e \n',tol_rank);fprintf(1,'............................................................\n');fprintf(1,'. \n');fprintf(1,'. \n');fprintf(1,'. Compute the rank-revealing RRQR decomposition: \n');fprintf(1,'. \n');fprintf(1,'. [p,R,Pi,Q,W,vec] = hrrqr(A,tol_rank) \n');fprintf(1,'. [p,R,Pi,Q,W,vec] = lrrqr(A,tol_rank) \n');fprintf(1,'. \n');input('. [Press RETURN to continue]');fprintf(1,'. \n');fprintf(1,'. wait... \n');fprintf(1,'. \n');% Compute RRQR by means of HRRQR.flops(0);t0 = cputime;[p,R,Pi,Q,W,vec] = hrrqr(A,tol_rank);% Orthonormal vectors ful null space.V = Pi*[R(1:p,1:p)\R(1:p,p+1:n);-eye(n-p)];V = orth(V);time = cputime - t0;noflops = flops;rnorm = norm(R(1:p,p+1:n));theta = norm(V'*v(:,1:p));phi = norm(Q(:,1:p)'*u(:,p+1:end));fprintf(1,'. \n');fprintf(1,'. Output results from HRRQR \n');fprintf(1,'............................................................\n');fprintf(1,'. numerical rank p of A = %3.0f \n',p);fprintf(1,'. upper bound of ||R(1:p,p+1:n)|| = %6.4e \n',vec(1));fprintf(1,'. estimate of pth singular value = %6.4e \n',vec(2));fprintf(1,'. estimate of (p+1)th singular value = %6.4e \n',vec(3));fprintf(1,'. estimate of num. nullspace angle = %6.4e \n',vec(4));fprintf(1,'. estimate of num. range angle = %6.4e \n',vec(5));fprintf(1,'............................................................\n');fprintf(1,'. \n');fprintf(1,'. \n');fprintf(1,'. SVD based results \n');fprintf(1,'............................................................\n');fprintf(1,'. numerical rank p of A = %3.0f \n',numrank);fprintf(1,'. ||R(1:p,p+1:n)|| = %6.4e \n',rnorm);fprintf(1,'. pth singular value = %6.4e \n',s1(numrank));fprintf(1,'. (p+1)th singular value = %6.4e \n',s2(1));fprintf(1,'. numerical nullspace angle = %6.4e \n',theta);fprintf(1,'. numerical range angle = %6.4e \n',phi);fprintf(1,'............................................................\n');fprintf(1,'. \n');fprintf(1,'. \n');fprintf(1,'. Computational complexity of HRRQR \n');fprintf(1,'............................................................\n');fprintf(1,'. floating point operations = %6.4e \n',noflops);fprintf(1,'. CPU time = %6.4e \n',time);fprintf(1,'............................................................\n');fprintf(1,'. \n');input('. [Press RETURN to continue]');fprintf(1,'. \n');% Compute RRQR by means of LRRQR.flops(0);t0 = cputime;[p,R,Pi,Q,W,vec] = lrrqr(A,tol_rank);% Orthonormal vectors ful null space.V = Pi*[R(1:p,1:p)\R(1:p,p+1:n);-eye(n-p)];V = orth(V);time = cputime - t0;noflops = flops;rnorm = norm(R(1:p,p+1:n));theta = norm(V'*v(:,1:p));phi = norm(Q(:,1:p)'*u(:,p+1:end));fprintf(1,'. \n');fprintf(1,'. Output results from LRRQR \n');fprintf(1,'............................................................\n');fprintf(1,'. numerical rank p of A = %3.0f \n',p);fprintf(1,'. upper bound of ||R(1:p,p+1:n)|| = %6.4e \n',vec(1));fprintf(1,'. estimate of pth singular value = %6.4e \n',vec(2));fprintf(1,'. estimate of (p+1)th singular value = %6.4e \n',vec(3));fprintf(1,'. estimate of num. nullspace angle = %6.4e \n',vec(4));fprintf(1,'. estimate of num. range angle = %6.4e \n',vec(5));fprintf(1,'............................................................\n');fprintf(1,'. \n');fprintf(1,'. \n');fprintf(1,'. SVD based results \n');fprintf(1,'............................................................\n');fprintf(1,'. numerical rank p of A = %3.0f \n',numrank);fprintf(1,'. ||R(1:p,p+1:n)|| = %6.4e \n',rnorm);fprintf(1,'. pth singular value = %6.4e \n',s1(numrank));fprintf(1,'. (p+1)th singular value = %6.4e \n',s2(1));fprintf(1,'. numerical nullspace angle = %6.4e \n',theta);fprintf(1,'. numerical range angle = %6.4e \n',phi);fprintf(1,'............................................................\n');fprintf(1,'. \n');fprintf(1,'. \n');fprintf(1,'. Computational complexity of LRRQR \n');fprintf(1,'............................................................\n');fprintf(1,'. floating point operations = %6.4e \n',noflops);fprintf(1,'. CPU time = %6.4e \n',time);fprintf(1,'............................................................\n');fprintf(1,'. \n');%-----------------------------------------------------------------------% End of function rrqrdemo%-----------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -