⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rrqrdemo.m

📁 UTV工具包提供46个Matlab函数
💻 M
字号:
function rrqrdemo%  rrqrdemo --> Demonstrates high- and low-rank RRQR algorithms.%  <Revision>%    Per Christian Hansen, IMM, Technical University of Denmark%    Peter S. K. Hansen, IMM, Technical University of Denmark%%    Last revised: June 22, 1999%-----------------------------------------------------------------------fprintf(1,'.                                                           \n');fprintf(1,'.  The purpose of RRQRDEMO is to demonstrate the high-      \n');fprintf(1,'.  and low-rank RRQR algorithms in HRRQR and LRRQR.         \n');fprintf(1,'.                                                           \n');input('.                                 [Press RETURN to continue]');fprintf(1,'.                                                           \n');format short e;% Test matrix generation.m = 50;n = 20;randn('seed',100);A = randn(m,n);numrank = 13;[u,s,v] = svd(A);s1 = 2*logspace(1,-3,numrank);s2 = 5*logspace(-5,-8,n-numrank);s(1:n,:) = diag([s1,s2]);A = u*s*v';% Define input parameters.tol_rank = 0.001;fprintf(1,'.                                                           \n');fprintf(1,'.  Input parameters to HRRQR and LRRQR                      \n');fprintf(1,'............................................................\n');fprintf(1,'.    no. rows m of A                     = %3.0f \n',m);fprintf(1,'.    no. cols n of A                     = %3.0f \n',n);fprintf(1,'.    rank tolerance (tol_rank)           = %6.4e \n',tol_rank);fprintf(1,'............................................................\n');fprintf(1,'.                                                           \n');fprintf(1,'.                                                           \n');fprintf(1,'.  Compute the rank-revealing RRQR decomposition:           \n');fprintf(1,'.                                                           \n');fprintf(1,'.    [p,R,Pi,Q,W,vec] = hrrqr(A,tol_rank)                   \n');fprintf(1,'.    [p,R,Pi,Q,W,vec] = lrrqr(A,tol_rank)                   \n');fprintf(1,'.                                                           \n');input('.                                 [Press RETURN to continue]');fprintf(1,'.                                                           \n');fprintf(1,'.  wait...                                                  \n');fprintf(1,'.                                                           \n');% Compute RRQR by means of HRRQR.flops(0);t0 = cputime;[p,R,Pi,Q,W,vec] = hrrqr(A,tol_rank);% Orthonormal vectors ful null space.V = Pi*[R(1:p,1:p)\R(1:p,p+1:n);-eye(n-p)];V = orth(V);time = cputime - t0;noflops = flops;rnorm = norm(R(1:p,p+1:n));theta = norm(V'*v(:,1:p));phi   = norm(Q(:,1:p)'*u(:,p+1:end));fprintf(1,'.                                                           \n');fprintf(1,'.  Output results from HRRQR                                \n');fprintf(1,'............................................................\n');fprintf(1,'.    numerical rank p of A               = %3.0f \n',p);fprintf(1,'.    upper bound of ||R(1:p,p+1:n)||     = %6.4e \n',vec(1));fprintf(1,'.    estimate of pth singular value      = %6.4e \n',vec(2));fprintf(1,'.    estimate of (p+1)th singular value  = %6.4e \n',vec(3));fprintf(1,'.    estimate of num. nullspace angle    = %6.4e \n',vec(4));fprintf(1,'.    estimate of num. range angle        = %6.4e \n',vec(5));fprintf(1,'............................................................\n');fprintf(1,'.                                                           \n');fprintf(1,'.                                                           \n');fprintf(1,'.  SVD based results                                        \n');fprintf(1,'............................................................\n');fprintf(1,'.    numerical rank p of A               = %3.0f \n',numrank);fprintf(1,'.    ||R(1:p,p+1:n)||                    = %6.4e \n',rnorm);fprintf(1,'.    pth singular value                  = %6.4e \n',s1(numrank));fprintf(1,'.    (p+1)th singular value              = %6.4e \n',s2(1));fprintf(1,'.    numerical nullspace angle           = %6.4e \n',theta);fprintf(1,'.    numerical range angle               = %6.4e \n',phi);fprintf(1,'............................................................\n');fprintf(1,'.                                                           \n');fprintf(1,'.                                                           \n');fprintf(1,'.  Computational complexity of HRRQR                        \n');fprintf(1,'............................................................\n');fprintf(1,'.    floating point operations           = %6.4e \n',noflops);fprintf(1,'.    CPU time                            = %6.4e \n',time);fprintf(1,'............................................................\n');fprintf(1,'.                                                           \n');input('.                                 [Press RETURN to continue]');fprintf(1,'.                                                           \n');% Compute RRQR by means of LRRQR.flops(0);t0 = cputime;[p,R,Pi,Q,W,vec] = lrrqr(A,tol_rank);% Orthonormal vectors ful null space.V = Pi*[R(1:p,1:p)\R(1:p,p+1:n);-eye(n-p)];V = orth(V);time = cputime - t0;noflops = flops;rnorm = norm(R(1:p,p+1:n));theta = norm(V'*v(:,1:p));phi   = norm(Q(:,1:p)'*u(:,p+1:end));fprintf(1,'.                                                           \n');fprintf(1,'.  Output results from LRRQR                                \n');fprintf(1,'............................................................\n');fprintf(1,'.    numerical rank p of A               = %3.0f \n',p);fprintf(1,'.    upper bound of ||R(1:p,p+1:n)||     = %6.4e \n',vec(1));fprintf(1,'.    estimate of pth singular value      = %6.4e \n',vec(2));fprintf(1,'.    estimate of (p+1)th singular value  = %6.4e \n',vec(3));fprintf(1,'.    estimate of num. nullspace angle    = %6.4e \n',vec(4));fprintf(1,'.    estimate of num. range angle        = %6.4e \n',vec(5));fprintf(1,'............................................................\n');fprintf(1,'.                                                           \n');fprintf(1,'.                                                           \n');fprintf(1,'.  SVD based results                                        \n');fprintf(1,'............................................................\n');fprintf(1,'.    numerical rank p of A               = %3.0f \n',numrank);fprintf(1,'.    ||R(1:p,p+1:n)||                    = %6.4e \n',rnorm);fprintf(1,'.    pth singular value                  = %6.4e \n',s1(numrank));fprintf(1,'.    (p+1)th singular value              = %6.4e \n',s2(1));fprintf(1,'.    numerical nullspace angle           = %6.4e \n',theta);fprintf(1,'.    numerical range angle               = %6.4e \n',phi);fprintf(1,'............................................................\n');fprintf(1,'.                                                           \n');fprintf(1,'.                                                           \n');fprintf(1,'.  Computational complexity of LRRQR                        \n');fprintf(1,'............................................................\n');fprintf(1,'.    floating point operations           = %6.4e \n',noflops);fprintf(1,'.    CPU time                            = %6.4e \n',time);fprintf(1,'............................................................\n');fprintf(1,'.                                                           \n');%-----------------------------------------------------------------------% End of function rrqrdemo%-----------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -