📄 urv_csne.m
字号:
function [u1,q1,flag_csne] = urv_csne(A,R,V,kappa)% urv_csne --> Corrected semi-normal equations expansion (URV).%% <Synopsis>% [u1,q1,flag_csne] = urv_csne(A,R,V,kappa)%% <Description>% Compute the first row u1 of the m-by-n matrix U and the first element% q1 of the expanded column q which is orthogonal to the columns of U, by% using the LINPACK approach if it is safe, and if not, by solving the% following least squares problem by means of the CSNE method:%% (A*V)'*(A*V)*z = R'*R*z = (A*V)'*e1%% where%% A = U*R*V'%% If the parameter flag_csne is true, the CSNE approach has been used.% The parameter kappa (greater than one) is used to control the% orthogonalization procedure. A typical value for kappa is sqrt(2).%% <Algorithm>% The algorithm is based on triangular solves. If R is rank deficient,% then the rank information is used in the triangular solves.%% <See Also>% mgsr --> Modified Gram-Schmidt expansion.% ulv_csne --> Corrected semi-normal equations expansion (ULV).% <References>% [1] A. Bjorck, H. Park and L. Elden, "Accurate Downdating of Least Squares% Solutions", SIAM J. Matrix. Anal. Appl., 15 (1994), pp. 549--568.%% [2] H. Park and L. Elden, "Downdating the Rank Revealing URV% Decomposition", SIAM J. Matrix Anal. Appl., 16 (1995), pp. 138--155.%% <Revision>% Ricardo D. Fierro, California State University San Marcos% Per Christian Hansen, IMM, Technical University of Denmark% Peter S.K. Hansen, IMM, Technical University of Denmark%% Last revised: June 22, 1999%-----------------------------------------------------------------------[m,n] = size(A);% CSNE tolerances.tau_csne = 0.95; % Tolerance in switch between Linpack and CSNE approach.tol_csne = 10*n*eps; % Tolerance in rank decision.flag_csne = 0;% Near-rank deficiency is not revealed in L.idx = find(abs(diag(R)) > tol_csne);idx_ill = find(abs(diag(R)) <= tol_csne);% z' = e1'*A*V.z = (A(1,1:n)*V)';z(idx_ill) = zeros(length(idx_ill),1);% Solve R'*U(1,:)' = z. The right-hand side is overwritten by the solution.z(idx) = R(idx,idx)'\z(idx);% Move solution to 1. row of U, and compute q1.u1 = z';% Check whether Linpack approach is safe.u1norm = norm(u1);if (u1norm < tau_csne) q1 = sqrt(1 - u1norm^2); return;end% Use CSNE approach.flag_csne = 1;% Solve R*y = U(1,:)' = z. The right-hand side is overwritten by the solution.z(idx) = R(idx,idx)\z(idx);% q = e1 - A*V*z.q = eye(m,1) - A*(V*z);% 2-norm of first solution q.q1norm = norm(q);% Solution refinement step...z = ((q'*A)*V)';% Solve R'*dU(1,:)' = z. The right-hand side is overwritten by the solution.z(idx) = R(idx,idx)'\z(idx);% Correct 1. row of U by solution.u1 = u1 + z';% Solve R*dz = dU(1,:)' = z. The right-hand side is overwritten.z(idx) = R(idx,idx)\z(idx);q = q - A*(V*z);% 2-norm of second solution q.q2norm = norm(q);if (q2norm <= q1norm/kappa) % We can orthogonalize any vector to U(2:m,:). q1 = 0.0;else % Normalization of the expanded column of U. q1 = q(1)/q2norm;end%-----------------------------------------------------------------------% End of function urv_csne%-----------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -