📄 urv_rdef.m
字号:
function [R,V,U] = urv_rdef(R,V,U,r,vmax)% urv_rdef --> Deflate one row of R in the URV decomposition.%% <Synopsis>% [R,V,U] = urv_rdef(R,V,U,r,vmax)%% <Description>% Given the URV decomposition U*R*V', the function deflates% R(r:n,r:n). vmax is an estimate of the right singular vector% of R(r:n,r:n) associated with the largest singular value.% On return, norm(R(r,r:n)) is of the order sigma_r. The% matrices U and V can be left out by inserting an empty% matrix [].%% <See Also>% urv_cdef --> Deflate one column of R in the URV decomposition.% <References>% [1] R.D. Fierro and P.C. Hansen, "Low-Rank Revealing UTV Decompositions",% Numerical Algorithms, 15 (1997), pp. 37--55.%% <Revision>% Ricardo D. Fierro, California State University San Marcos% Per Christian Hansen, IMM, Technical University of Denmark% Peter S.K. Hansen, IMM, Technical University of Denmark%% Last revised: June 22, 1999%-----------------------------------------------------------------------% Check the input arguments.vflag = 1;if (isempty(V)), vflag = 0; enduflag = 1;if (isempty(U)), uflag = 0; end% Initialize.[n,n] = size(R);for (i = n:-1:r+1) % Transform vmax to e_1. [c,s,vmax(i-r)] = gen_giv(vmax(i-r),vmax(i-r+1)); % Apply rotation to R on the right. [R(1:i,i-1),R(1:i,i)] = app_giv(R(1:i,i-1),R(1:i,i),c,s); % Apply rotation to V on the right. if (vflag) [V(1:n,i-1),V(1:n,i)] = app_giv(V(1:n,i-1),V(1:n,i),c,s); end % Restore R to upper triangular form using rotation on the left. [c,s,R(i-1,i-1)] = gen_giv(R(i-1,i-1),R(i,i-1)); R(i,i-1) = 0; % Eliminate R(i,i-1). [R(i-1,i:n),R(i,i:n)] = app_giv(R(i-1,i:n),R(i,i:n),c,s); % Apply rotation to U on the right. if (uflag) [U(:,i-1),U(:,i)] = app_giv(U(:,i-1),U(:,i),c,s); endend%-----------------------------------------------------------------------% End of function urv_rdef%-----------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -