📄 ullv_up_a.m
字号:
function [p,LA,L,V,UA,UB,vec] = ullv_up_a(p,LA,L,V,UA,UB,a,beta, ... tol_rank,tol_ref,max_ref,fixed_rank)% ullv_up_a --> Update the A-part of the rank-revealing ULLV decomposition.%% <Synopsis>% [p,LA,L,V,UA,UB,vec] = ullv_up_a(p,LA,L,V,UA,UB,a)% [p,LA,L,V,UA,UB,vec] = ullv_up_a(p,LA,L,V,UA,UB,a,beta)% [p,LA,L,V,UA,UB,vec] = ullv_up_a(p,LA,L,V,UA,UB,a,beta,tol_rank)% [p,LA,L,V,UA,UB,vec] = ullv_up_a(p,LA,L,V,UA,UB,a,beta, ...% tol_rank,tol_ref,max_ref)% [p,LA,L,V,UA,UB,vec] = ullv_up_a(p,LA,L,V,UA,UB,a,beta, ...% tol_rank,tol_ref,max_ref,fixed_rank)%% <Description>% Given a rank-revealing ULLV decomposition of the mA-by-n matrix% A = UA*LA*L*V' and mB-by-n matrix B = UB*L*V' (mA,mB >= n), the% function computes the updated decomposition%% [beta*A] = UA*LA*L*V' and B = UB*L*V'% [ a ]%% where a is the new row added to A, and beta is a forgetting% factor in [0;1], which is multiplied to existing rows to damp% out the old data. Note that the row dimension of UA will increase% by one, and that the matrices UA and UB can be left out by inserting% an empty matrix [].%% <Input Parameters>% 1. p --> numerical rank of A*pseudoinv(B) revealed in LA;% 2-6. LA,L,V,UA,UB --> the ULLV factors such that A = UA*LA*L*V'% and B = UB*L*V';% 7. a --> the new row added to A;% 8. beta --> forgetting factor in [0;1];% 9. tol_rank --> rank decision tolerance;% 10. tol_ref --> upper bound on the 2-norm of the off-diagonal block% LA(p+1:n,1:p) relative to the Frobenius-norm of LA;% 11. max_ref --> max. number of refinement steps per singular value% to achieve the upper bound tol_ref;% 12. fixed_rank --> if true, deflate to the fixed rank given by p% instead of using the rank decision tolerance;%% Defaults: beta = 1;% tol_rank = sqrt(n)*norm(LA,1)*eps;% tol_ref = 1e-04;% max_ref = 0;%% <Output Parameters>% 1. p --> numerical rank of [beta*A; a]*pseudoinverse(B);% 2-6. LA,L,V,UA,UB --> the ULLV factors such that% [beta*A; a] = UA*LA*L*V' and B = UB*L*V';% 7. vec --> a 5-by-1 vector with:% vec(1) = upper bound of norm(LA(p+1:n,1:p)),% vec(2) = estimate of pth singular value,% vec(3) = estimate of (p+1)th singular value,% vec(4) = a posteriori upper bound of num. nullspace angle,% vec(5) = a posteriori upper bound of num. range angle.%% <See Also>% ullv_up_b --> Update the B-part of the rank-revealing ULLV decomp.% ullv_dw_a --> Downdate the A-part of the rank-revealing ULLV decomp.% <References>% [1] F.T.Luk and S.Qiao, "A New Matrix Decomposition for Signal% Processing", Automatica, 30 (1994), pp. 39--43.%% [2] M. Moonen, P. Van Dooren and J. Vandewalle, "A Note on Efficient% Numerically Stabilized Rank-One Eigenstructure Updating", IEEE Trans.% on Signal Processing, 39 (1991), pp. 1911--1913.%% <Revision>% Ricardo D. Fierro, California State University San Marcos% Per Christian Hansen, IMM, Technical University of Denmark% Peter S.K. Hansen, IMM, Technical University of Denmark%% Last revised: June 22, 1999%-----------------------------------------------------------------------% Check the required input arguments.if (nargin < 7) error('Not enough input arguments.')end[mLA,n] = size(LA);[mL,nL] = size(L);[mV,nV] = size(V);if (mLA*n == 0) | (mL*nL == 0) | (mV*nV == 0) error('Empty input matrices LA, L and V not allowed.')elseif (mLA ~= n) | (mL ~= nL) | (mV ~= nV) error('Square n-by-n matrices LA, L and V required.')elseif (nL ~= n) | (nV ~= n) error('Not a valid ULLV decomposition.')end[mA,nA] = size(UA);if (mA*nA == 0) uAflag = 0;elseif (nA ~= n) error('Not a valid ULLV decomposition.')elseif (mA < n) error('The A-part of the system is underdetermined.');else uAflag = 1; UA = [UA; zeros(1,n)];end[mB,nB] = size(UB);if (mB*nB == 0) uBflag = 0;elseif (nB ~= n) error('Not a valid ULLV decomposition.')elseif (mB < n) error('The B-part of the system is underdetermined.');else uBflag = 1;endif (length(a) ~= n) error('Not a valid update vector.')endif (p ~= abs(round(p))) | (p > n) error('Requires the rank p to be an integer between 0 and n.')end% Check the optional input arguments, and set defaults.if (nargin == 7) beta = 1; tol_rank = sqrt(n)*norm(LA,1)*eps; tol_ref = 1e-04; max_ref = 0; fixed_rank = 0;elseif (nargin == 8) if isempty(beta), beta = 1; end tol_rank = sqrt(n)*norm(LA,1)*eps; tol_ref = 1e-04; max_ref = 0; fixed_rank = 0;elseif (nargin == 9) if isempty(beta), beta = 1; end if isempty(tol_rank), tol_rank = sqrt(n)*norm(LA,1)*eps; end tol_ref = 1e-04; max_ref = 0; fixed_rank = 0;elseif (nargin == 10) if isempty(beta), beta = 1; end if isempty(tol_rank), tol_rank = sqrt(n)*norm(LA,1)*eps; end if isempty(tol_ref), tol_ref = 1e-04; end max_ref = 0; fixed_rank = 0;elseif (nargin == 11) if isempty(beta), beta = 1; end if isempty(tol_rank), tol_rank = sqrt(n)*norm(LA,1)*eps; end if isempty(tol_ref), tol_ref = 1e-04; end if isempty(max_ref), max_ref = 0; end fixed_rank = 0;elseif (nargin == 12) if isempty(beta), beta = 1; end if isempty(tol_ref), tol_ref = 1e-04; end if isempty(max_ref), max_ref = 0; end if (fixed_rank) tol_rank = realmax; else if isempty(tol_rank), tol_rank = sqrt(n)*norm(LA,1)*eps; end fixed_rank = 0; endendif (prod(size(beta))>1) | (beta(1,1)>1) | (beta(1,1)<0) error('Requires beta to be a scalar between 0 and 1.')endif (tol_rank ~= abs(tol_rank)) | (tol_ref ~= abs(tol_ref)) error('Requires positive values for tol_rank and tol_ref.')endif (max_ref ~= abs(round(max_ref))) error('Requires positive integer value for max_ref.')end% Check the number of output arguments.if (nargout ~= 7) vecflag = 0;else vecflag = 1;end% Update the decomposition.if (beta ~= 1) LA = beta*LA;end% The row vector d is extended to the bottom of L.d = a*V;% Eliminate all but the first element of the vector d using rotations.for (i = n:-1:2) % Eliminate L(n+1,i), i.e., elements in the row d extended to L. [c,s,d(i-1)] = gen_giv(d(i-1),d(i)); % Apply rotation to L on the right. [L(i-1:n,i-1),L(i-1:n,i)] = app_giv(L(i-1:n,i-1),L(i-1:n,i),c,s); % Apply rotation to V on the right. [V(1:n,i-1),V(1:n,i)] = app_giv(V(1:n,i-1),V(1:n,i),c,s); % Restore L to lower triangular form using rotation on the left. [c,s,L(i,i)] = gen_giv(L(i,i),L(i-1,i)); L(i-1,i) = 0; % Eliminate L(i-1,i). [L(i-1,1:i-1),L(i,1:i-1)] = app_giv(L(i-1,1:i-1),L(i,1:i-1),c,-s); % Apply rotation to LA on the right. [LA(i-1:n,i-1),LA(i-1:n,i)] = app_giv(LA(i-1:n,i-1),LA(i-1:n,i),c,-s); % Apply rotation to UB on the right. if (uBflag) [UB(1:mB,i-1),UB(1:mB,i)] = app_giv(UB(1:mB,i-1),UB(1:mB,i),c,-s); end % Restore LA to lower triangular form using rotation on the left. [c,s,LA(i,i)] = gen_giv(LA(i,i),LA(i-1,i)); LA(i-1,i) = 0; % Eliminate LA(i-1,i). [LA(i-1,1:i-1),LA(i,1:i-1)] = app_giv(LA(i-1,1:i-1),LA(i,1:i-1),c,-s); % Apply rotation to UA on the right. if (uAflag) [UA(1:mA,i-1),UA(1:mA,i)] = app_giv(UA(1:mA,i-1),UA(1:mA,i),c,-s); endend% Eliminate the first element of the row d using a scaled rotation.nu = d(1)/L(1,1); % First element of (n+1)th row of LA.% Eliminate the first element (nu) of the (n+1)th row of LA using rotation.[c,s,LA(1,1)] = gen_giv(LA(1,1),nu);% Apply rotation to UA on the right.if (uAflag) UA(1:mA,1) = c*UA(1:mA,1); UA(mA+1,1) = s; % Row dim. of UA has increased by one.end% Make the updated decomposition rank-revealing.% Initialize.smin = 0; % No 0th singular value.smin_p_plus_1 = 0; % No (n+1)th singular value.norm_tol_ref = norm(LA,'fro')*tol_ref/sqrt(n); % Value used to verify ... % ... the upper bound tol_ref.% Use a priori knowledge about rank changes.if (fixed_rank | beta == 1) p_min = p;else p_min = 0;end% Apparent increase in rank.if (p < n) p = p+1;end% Estimate of the p'th singular value and the corresponding left% singular vector via the generalized LINPACK condition estimator.[smin,umin] = ccvl(LA(1:p,1:p)');if (smin < tol_rank) % The rank stays the same or decrease. while ((smin < tol_rank) & (p > p_min)) % Apply deflation procedure to p'th row of LA in the ULLV decomposition. [LA,L,V,UA,UB] = ullv_rdef(LA,L,V,UA,UB,p,umin); % Refinement loop. num_ref = 0; % Init. refinement counter. while (norm(LA(p,1:p-1)) > norm_tol_ref) & (num_ref < max_ref) % Apply one QR-iteration to p'th row of LA in the ULLV decomposition. [LA,L,V,UA,UB] = ullv_ref(LA,L,V,UA,UB,p); num_ref = num_ref + 1; end % New rank estimate after the problem has been deflated. p = p - 1; smin_p_plus_1 = smin; % Estimate of the p'th singular value and the corresponding left % singular vector via the generalized LINPACK condition estimator. if (p > 0) [smin,umin] = ccvl(LA(1:p,1:p)'); else smin = 0; % No 0th singular value. end endelseif (p < n) % The rank increase by one. % Refinement loop. num_ref = 0; % Init. refinement counter. while (norm(LA(p+1,1:p)) > norm_tol_ref) & (num_ref < max_ref) % Apply one QR-iteration to p+1'th row of LA in the ULLV decomposition. [LA,L,V,UA,UB] = ullv_ref(LA,L,V,UA,UB,p+1); num_ref = num_ref + 1; end % Estimate of the (p+1)th singular value and the corresponding left % singular vector via the generalized LINPACK condition estimator. [smin_p_plus_1,umin] = ccvl(LA(1:p+1,1:p+1)');end% Normalize the columns of V in order to maintain orthogonality.for (i = 1:n) V(:,i) = V(:,i)./norm(V(:,i));end% Estimates that describe the quality of the decomposition.if (vecflag) vec = zeros(5,1); vec(1) = sqrt(n-p)*norm(LA(p+1:n,1:p),1); vec(2) = smin; vec(3) = smin_p_plus_1; vec(4) = (vec(1)*smin_p_plus_1)/(smin^2 - smin_p_plus_1^2); vec(5) = (vec(1)*smin)/(smin^2 - smin_p_plus_1^2);end%-----------------------------------------------------------------------% End of function ullv_up_a%-----------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -