📄 bandmat.cpp
字号:
// while (i--) { sum *= *a; a += w; }
if (i) for (;;) { sum *= *a; if (!(--i)) break; a += w; }
if (!d) sum.ChangeSign(); return sum;
}
GeneralMatrix* BandMatrix::MakeSolver()
{
REPORT
GeneralMatrix* gm = new BandLUMatrix(*this);
MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm;
}
void BandLUMatrix::ludcmp()
{
REPORT
Real* a = store2; int i = storage2;
// clear store2 - so unused locations are always zero -
// required by operator==
while (i--) *a++ = 0.0;
a = store;
i = m1; int j = m2; int k; int n = nrows_val; int w = m1 + 1 + m2;
while (i)
{
Real* ai = a + i;
k = ++j; while (k--) *a++ = *ai++;
k = i--; while (k--) *a++ = 0.0;
}
a = store; int l = m1;
for (k=0; k<n; k++)
{
Real x = *a; i = k; Real* aj = a;
if (l < n) l++;
for (j=k+1; j<l; j++)
{ aj += w; if (fabs(x) < fabs(*aj)) { x = *aj; i = j; } }
indx[k] = i;
if (x==0) { sing = true; return; }
if (i!=k)
{
d = !d; Real* ak = a; Real* ai = store + i * w; j = w;
while (j--) { x = *ak; *ak++ = *ai; *ai++ = x; }
}
aj = a + w; Real* m = store2 + m1 * k;
for (j=k+1; j<l; j++)
{
*m++ = x = *aj / *a; i = w; Real* ak = a;
while (--i) { Real* aj1 = aj++; *aj1 = *aj - x * *(++ak); }
*aj++ = 0.0;
}
a += w;
}
}
void BandLUMatrix::lubksb(Real* B, int mini)
{
REPORT
Tracer tr("BandLUMatrix::lubksb");
if (sing) Throw(SingularException(*this));
int n = nrows_val; int l = m1; int w = m1 + 1 + m2;
for (int k=0; k<n; k++)
{
int i = indx[k];
if (i!=k) { Real x=B[k]; B[k]=B[i]; B[i]=x; }
if (l<n) l++;
Real* m = store2 + k*m1; Real* b = B+k; Real* bi = b;
for (i=k+1; i<l; i++) *(++bi) -= *m++ * *b;
}
l = -m1;
for (int i = n-1; i>=mini; i--)
{
Real* b = B + i; Real* bk = b; Real x = *bk;
Real* a = store + w*i; Real y = *a;
int k = l+m1; while (k--) x -= *(++a) * *(++bk);
*b = x / y;
if (l < m2) l++;
}
}
void BandLUMatrix::Solver(MatrixColX& mcout, const MatrixColX& mcin)
{
REPORT
int i = mcin.skip; Real* el = mcin.data-i; Real* el1=el;
while (i--) *el++ = 0.0;
el += mcin.storage; i = nrows_val - mcin.skip - mcin.storage;
while (i--) *el++ = 0.0;
lubksb(el1, mcout.skip);
}
// Do we need check for entirely zero output?
void UpperBandMatrix::Solver(MatrixColX& mcout,
const MatrixColX& mcin)
{
REPORT
int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i;
while (i-- > 0) *elx++ = 0.0;
int nr = mcin.skip+mcin.storage;
elx = mcin.data+mcin.storage; Real* el = elx;
int j = mcout.skip+mcout.storage-nr; i = nr-mcout.skip;
while (j-- > 0) *elx++ = 0.0;
Real* Ael = store + (upper_val+1)*(i-1)+1; j = 0;
if (i > 0) for(;;)
{
elx = el; Real sum = 0.0; int jx = j;
while (jx--) sum += *(--Ael) * *(--elx);
elx--; *elx = (*elx - sum) / *(--Ael);
if (--i <= 0) break;
if (j<upper_val) Ael -= upper_val - (++j); else el--;
}
}
void LowerBandMatrix::Solver(MatrixColX& mcout,
const MatrixColX& mcin)
{
REPORT
int i = mcin.skip-mcout.skip; Real* elx = mcin.data-i;
while (i-- > 0) *elx++ = 0.0;
int nc = mcin.skip; i = nc+mcin.storage; elx = mcin.data+mcin.storage;
int nr = mcout.skip+mcout.storage; int j = nr-i; i = nr-nc;
while (j-- > 0) *elx++ = 0.0;
Real* el = mcin.data;
Real* Ael = store + (lower_val+1)*nc + lower_val;
j = 0;
if (i > 0) for(;;)
{
elx = el; Real sum = 0.0; int jx = j;
while (jx--) sum += *Ael++ * *elx++;
*elx = (*elx - sum) / *Ael++;
if (--i <= 0) break;
if (j<lower_val) Ael += lower_val - (++j); else el++;
}
}
LogAndSign BandMatrix::log_determinant() const
{
REPORT
BandLUMatrix C(*this); return C.log_determinant();
}
LogAndSign LowerBandMatrix::log_determinant() const
{
REPORT
int i = nrows_val; LogAndSign sum;
Real* s = store + lower_val; int j = lower_val + 1;
// while (i--) { sum *= *s; s += j; }
if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
LogAndSign UpperBandMatrix::log_determinant() const
{
REPORT
int i = nrows_val; LogAndSign sum; Real* s = store; int j = upper_val + 1;
// while (i--) { sum *= *s; s += j; }
if (i) for (;;) { sum *= *s; if (!(--i)) break; s += j; }
((GeneralMatrix&)*this).tDelete(); return sum;
}
GeneralMatrix* SymmetricBandMatrix::MakeSolver()
{
REPORT
GeneralMatrix* gm = new BandLUMatrix(*this);
MatrixErrorNoSpace(gm); gm->ReleaseAndDelete(); return gm;
}
SymmetricBandMatrix::SymmetricBandMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::SB);
GetMatrix(gmx);
}
GeneralMatrix* SymmetricBandMatrix::Transpose(TransposedMatrix*, MatrixType mt)
{ REPORT return Evaluate(mt); }
LogAndSign SymmetricBandMatrix::log_determinant() const
{
REPORT
BandLUMatrix C(*this); return C.log_determinant();
}
void SymmetricBandMatrix::SetParameters(const GeneralMatrix* gmx)
{ REPORT lower_val = gmx->bandwidth().lower_val; }
void SymmetricBandMatrix::resize(int n, int lb)
{
REPORT
Tracer tr("SymmetricBandMatrix::resize");
if (lb<0) Throw(ProgramException("Undefined bandwidth"));
lower_val = (lb<=n) ? lb : n-1;
GeneralMatrix::resize(n,n,n*(lower_val+1));
}
void SymmetricBandMatrix::resize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("SymmetricBandMatrix::resize(GM)");
Throw(NotSquareException(*this));
}
MatrixBandWidth mbw = A.bandwidth(); int b = mbw.Lower();
if (b != mbw.Upper())
{
Tracer tr("SymmetricBandMatrix::resize(GM)");
Throw(ProgramException("Upper and lower band-widths not equal"));
}
resize(n, b);
}
/*
bool SymmetricBandMatrix::SameStorageType(const GeneralMatrix& A) const
{
if (type() != A.type()) { REPORT return false; }
REPORT
return bandwidth() == A.bandwidth();
}
void SymmetricBandMatrix::resizeForAdd(const GeneralMatrix& A,
const GeneralMatrix& B)
{
REPORT
Tracer tr("SymmetricBandMatrix::resizeForAdd");
MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth();
if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0))
Throw(ProgramException("Can't resize to SymmetricBandMatrix" ));
// already know A and B are square
resize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower()));
}
void SymmetricBandMatrix::resizeForSP(const GeneralMatrix& A,
const GeneralMatrix& B)
{
REPORT
Tracer tr("SymmetricBandMatrix::resizeForSP");
MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth();
if ((A_BW.Lower() < 0) | (B_BW.Lower() < 0))
Throw(ProgramException("Can't resize to SymmetricBandMatrix" ));
// already know A and B are square
resize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower()));
}
*/
void SymmetricBandMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::SB);
}
void SymmetricBandMatrix::CornerClear() const
{
// set unused parts of BandMatrix to zero
REPORT
int i = lower_val; Real* s = store; int bw = lower_val + 1;
if (i) for(;;)
{
int j = i;
Real* sj = s;
while (j--) *sj++ = 0.0;
if (!(--i)) break;
s += bw;
}
}
MatrixBandWidth SymmetricBandMatrix::bandwidth() const
{ REPORT return MatrixBandWidth(lower_val,lower_val); }
GeneralMatrix* BandMatrix::Image() const
{
REPORT
GeneralMatrix* gm = new BandMatrix(*this); MatrixErrorNoSpace(gm);
return gm;
}
GeneralMatrix* UpperBandMatrix::Image() const
{
REPORT
GeneralMatrix* gm = new UpperBandMatrix(*this); MatrixErrorNoSpace(gm);
return gm;
}
GeneralMatrix* LowerBandMatrix::Image() const
{
REPORT
GeneralMatrix* gm = new LowerBandMatrix(*this); MatrixErrorNoSpace(gm);
return gm;
}
GeneralMatrix* SymmetricBandMatrix::Image() const
{
REPORT
GeneralMatrix* gm = new SymmetricBandMatrix(*this); MatrixErrorNoSpace(gm);
return gm;
}
GeneralMatrix* BandLUMatrix::Image() const
{
REPORT
GeneralMatrix* gm = new BandLUMatrix(*this); MatrixErrorNoSpace(gm);
return gm;
}
inline Real square(Real x) { return x*x; }
Real SymmetricBandMatrix::sum_square() const
{
REPORT
CornerClear();
Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val;
int l=lower_val;
while (i--)
{ int j = l; while (j--) sum2 += square(*s++); sum1 += square(*s++); }
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
Real SymmetricBandMatrix::sum_absolute_value() const
{
REPORT
CornerClear();
Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val;
int l=lower_val;
while (i--)
{ int j = l; while (j--) sum2 += fabs(*s++); sum1 += fabs(*s++); }
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
Real SymmetricBandMatrix::sum() const
{
REPORT
CornerClear();
Real sum1=0.0; Real sum2=0.0; Real* s=store; int i=nrows_val;
int l=lower_val;
while (i--)
{ int j = l; while (j--) sum2 += *s++; sum1 += *s++; }
((GeneralMatrix&)*this).tDelete(); return sum1 + 2.0 * sum2;
}
#ifdef use_namespace
}
#endif
///@}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -