📄 bandmat.cpp
字号:
/// \ingroup newmat
///@{
/// \file bandmat.cpp
/// Band-matrix member functions.
// Copyright (C) 1991,2,3,4,9: R B Davies
#define WANT_MATH // include.h will get math fns
//#define WANT_STREAM
#include "include.h"
#include "newmat.h"
#include "newmatrc.h"
#ifdef use_namespace
namespace NEWMAT {
#endif
#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,10); ++ExeCount; }
#else
#define REPORT {}
#endif
static inline int my_min(int x, int y) { return x < y ? x : y; }
static inline int my_max(int x, int y) { return x > y ? x : y; }
BandMatrix::BandMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::BM);
GetMatrix(gmx); CornerClear();
}
void BandMatrix::SetParameters(const GeneralMatrix* gmx)
{
REPORT
MatrixBandWidth bw = gmx->bandwidth();
lower_val = bw.lower_val; upper_val = bw.upper_val;
}
void BandMatrix::resize(int n, int lb, int ub)
{
REPORT
Tracer tr("BandMatrix::resize");
if (lb<0 || ub<0) Throw(ProgramException("Undefined bandwidth"));
lower_val = (lb<=n) ? lb : n-1; upper_val = (ub<=n) ? ub : n-1;
GeneralMatrix::resize(n,n,n*(lower_val+1+upper_val)); CornerClear();
}
// SimpleAddOK shows when we can add etc two matrices by a simple vector add
// and when we can add one matrix into another
//
// *gm must be the same type as *this
// - return 0 if simple add is OK
// - return 1 if we can add into *gm only
// - return 2 if we can add into *this only
// - return 3 if we can't add either way
//
// For SP this will still be valid if we swap 1 and 2
/// \brief can we add two band matrices with simple vector add
///
/// For band matrices the bandwidths must agree
short BandMatrix::SimpleAddOK(const GeneralMatrix* gm)
{
const BandMatrix* bm = (const BandMatrix*)gm;
if (bm->lower_val == lower_val && bm->upper_val == upper_val)
{ REPORT return 0; }
else if (bm->lower_val >= lower_val && bm->upper_val >= upper_val)
{ REPORT return 1; }
else if (bm->lower_val <= lower_val && bm->upper_val <= upper_val)
{ REPORT return 2; }
else { REPORT return 3; }
}
/// \brief can we add two symmetric band matrices with simple vector add
///
/// Sufficient to check lower bandwidths agree
short SymmetricBandMatrix::SimpleAddOK(const GeneralMatrix* gm)
{
const SymmetricBandMatrix* bm = (const SymmetricBandMatrix*)gm;
if (bm->lower_val == lower_val) { REPORT return 0; }
else if (bm->lower_val > lower_val) { REPORT return 1; }
else { REPORT return 2; }
}
/// \brief resize UpperBandMatrix
void UpperBandMatrix::resize(int n, int lb, int ub)
{
REPORT
if (lb != 0)
{
Tracer tr("UpperBandMatrix::resize");
Throw(ProgramException("UpperBandMatrix with non-zero lower band" ));
}
BandMatrix::resize(n, lb, ub);
}
/// \brief resize LowerBandMatrix
void LowerBandMatrix::resize(int n, int lb, int ub)
{
REPORT
if (ub != 0)
{
Tracer tr("LowerBandMatrix::resize");
Throw(ProgramException("LowerBandMatrix with non-zero upper band" ));
}
BandMatrix::resize(n, lb, ub);
}
/// \brief resize BandMatrix
void BandMatrix::resize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("BandMatrix::resize(GM)");
Throw(NotSquareException(*this));
}
MatrixBandWidth mbw = A.bandwidth();
resize(n, mbw.Lower(), mbw.Upper());
}
/*
bool BandMatrix::SameStorageType(const GeneralMatrix& A) const
{
if (type() != A.type()) { REPORT return false; }
REPORT
return bandwidth() == A.bandwidth();
}
void BandMatrix::resizeForAdd(const GeneralMatrix& A, const GeneralMatrix& B)
{
REPORT
Tracer tr("BandMatrix::resizeForAdd");
MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth();
if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0)
| (A_BW.Upper() < 0))
Throw(ProgramException("Can't resize to BandMatrix" ));
// already know A and B are square
resize(A.Nrows(), my_max(A_BW.Lower(), B_BW.Lower()),
my_max(A_BW.Upper(), B_BW.Upper()));
}
void BandMatrix::resizeForSP(const GeneralMatrix& A, const GeneralMatrix& B)
{
REPORT
Tracer tr("BandMatrix::resizeForSP");
MatrixBandWidth A_BW = A.bandwidth(); MatrixBandWidth B_BW = B.bandwidth();
if ((A_BW.Lower() < 0) | (A_BW.Upper() < 0) | (B_BW.Lower() < 0)
| (A_BW.Upper() < 0))
Throw(ProgramException("Can't resize to BandMatrix" ));
// already know A and B are square
resize(A.Nrows(), my_min(A_BW.Lower(), B_BW.Lower()),
my_min(A_BW.Upper(), B_BW.Upper()));
}
*/
/// \brief assignment operator for BandMatrix
void BandMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::BM); CornerClear();
}
/// \brief set unused parts of BandMatrix to zero
void BandMatrix::CornerClear() const
{
REPORT
int i = lower_val; Real* s = store; int bw = lower_val + 1 + upper_val;
while (i)
{ int j = i--; Real* sj = s; s += bw; while (j--) *sj++ = 0.0; }
i = upper_val; s = store + storage;
while (i)
{ int j = i--; Real* sj = s; s -= bw; while (j--) *(--sj) = 0.0; }
}
MatrixBandWidth MatrixBandWidth::operator+(const MatrixBandWidth& bw) const
{
REPORT
int l = bw.lower_val; int u = bw.upper_val;
l = (lower_val < 0 || l < 0) ? -1 : (lower_val > l) ? lower_val : l;
u = (upper_val < 0 || u < 0) ? -1 : (upper_val > u) ? upper_val : u;
return MatrixBandWidth(l,u);
}
MatrixBandWidth MatrixBandWidth::operator*(const MatrixBandWidth& bw) const
{
REPORT
int l = bw.lower_val; int u = bw.upper_val;
l = (lower_val < 0 || l < 0) ? -1 : lower_val+l;
u = (upper_val < 0 || u < 0) ? -1 : upper_val+u;
return MatrixBandWidth(l,u);
}
MatrixBandWidth MatrixBandWidth::minimum(const MatrixBandWidth& bw) const
{
REPORT
int l = bw.lower_val; int u = bw.upper_val;
if ((lower_val >= 0) && ( (l < 0) || (l > lower_val) )) l = lower_val;
if ((upper_val >= 0) && ( (u < 0) || (u > upper_val) )) u = upper_val;
return MatrixBandWidth(l,u);
}
UpperBandMatrix::UpperBandMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::UB);
GetMatrix(gmx); CornerClear();
}
void UpperBandMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::UB); CornerClear();
}
LowerBandMatrix::LowerBandMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::LB);
GetMatrix(gmx); CornerClear();
}
void LowerBandMatrix::operator=(const BaseMatrix& X)
{
REPORT // CheckConversion(X);
// MatrixConversionCheck mcc;
Eq(X,MatrixType::LB); CornerClear();
}
BandLUMatrix::BandLUMatrix(const BaseMatrix& m)
{
REPORT
Tracer tr("BandLUMatrix");
storage2 = 0; store2 = 0; indx = 0; // in event of exception during build
GeneralMatrix* gm = ((BaseMatrix&)m).Evaluate();
if (gm->nrows() != gm->ncols())
{ gm->tDelete(); Throw(NotSquareException(*this)); }
if (gm->type() == MatrixType::BC)
{ REPORT ((BandLUMatrix*)gm)->get_aux(*this); GetMatrix(gm); }
else
{
REPORT
BandMatrix* gm1 = (BandMatrix*)(gm->Evaluate(MatrixType::BM));
m1 = gm1->lower_val; m2 = gm1->upper_val;
GetMatrix(gm1);
d = true; sing = false;
indx = new int [nrows_val]; MatrixErrorNoSpace(indx);
MONITOR_INT_NEW("Index (BndLUMat)",nrows_val,indx)
storage2 = nrows_val * m1;
store2 = new Real [storage2]; MatrixErrorNoSpace(store2);
MONITOR_REAL_NEW("Make (BandLUMat)",storage2,store2)
ludcmp();
}
}
GeneralMatrix* BandLUMatrix::Evaluate(MatrixType mt)
{
if (Compare(this->Type(),mt)) { REPORT return this; }
REPORT
Tracer et("BandLUMatrix::Evaluate");
bool dummy = true;
if (dummy) Throw(ProgramException("Illegal use of BandLUMatrix", *this));
return this;
}
// could we use SetParameters instead of this
void BandLUMatrix::get_aux(BandLUMatrix& X)
{
X.d = d; X.sing = sing; X.storage2 = storage2; X.m1 = m1; X.m2 = m2;
if (tag_val == 0 || tag_val == 1) // reuse the array
{
REPORT
X.indx = indx; indx = 0;
X.store2 = store2; store2 = 0;
d = true; sing = true; storage2 = 0; m1 = 0; m2 = 0;
return;
}
else if (nrows_val == 0)
{
REPORT
indx = 0; store2 = 0; storage2 = 0;
d = true; sing = true; m1 = m2 = 0;
return;
}
else // copy the array
{
REPORT
Tracer tr("BandLUMatrix::get_aux");
int *ix = new int [nrows_val]; MatrixErrorNoSpace(ix);
MONITOR_INT_NEW("Index (BLUM::get_aux)", nrows_val, ix)
int n = nrows_val; int* i = ix; int* j = indx;
while(n--) *i++ = *j++;
X.indx = ix;
Real *rx = new Real [storage2]; MatrixErrorNoSpace(indx);
MONITOR_REAL_NEW("Index (BLUM::get_aux)", storage2, rx)
newmat_block_copy(storage2, store2, rx);
X.store2 = rx;
}
}
BandLUMatrix::BandLUMatrix(const BandLUMatrix& gm) : GeneralMatrix()
{
REPORT
Tracer tr("BandLUMatrix(const BandLUMatrix&)");
((BandLUMatrix&)gm).get_aux(*this);
GetMatrix(&gm);
}
void BandLUMatrix::operator=(const BandLUMatrix& gm)
{
if (&gm == this) { REPORT tag_val = -1; return; }
REPORT
delete [] indx; indx = 0;
delete [] store2; store2 = 0; storage2 = 0;
((BandLUMatrix&)gm).get_aux(*this);
Eq(gm);
}
BandLUMatrix::~BandLUMatrix()
{
REPORT
MONITOR_INT_DELETE("Index (BndLUMat)",nrows_val,indx)
MONITOR_REAL_DELETE("Delete (BndLUMt)",storage2,store2)
delete [] indx; delete [] store2;
}
MatrixType BandLUMatrix::type() const { REPORT return MatrixType::BC; }
LogAndSign BandLUMatrix::log_determinant() const
{
REPORT
if (sing) return 0.0;
Real* a = store; int w = m1+1+m2; LogAndSign sum; int i = nrows_val;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -