📄 tmtd.cpp
字号:
/// \ingroup newmat
///@{
/// \file tmtd.cpp
/// Part of matrix library test program.
//#define WANT_STREAM
#include "include.h"
#include "newmatap.h"
#include "tmt.h"
#ifdef use_namespace
using namespace NEWMAT;
#endif
ReturnMatrix Inverter1(const CroutMatrix& X)
{
Matrix Y = X.i();
Y.Release();
return Y.ForReturn();
}
// this version forces a copy
ReturnMatrix Inverter2(CroutMatrix X)
{
Matrix Y = X.i();
Y.Release();
return Y.ForReturn();
}
ReturnMatrix Inverter1(const BandLUMatrix& X)
{
Matrix Y = X.i();
Y.Release();
return Y.ForReturn();
}
// this version forces a copy
ReturnMatrix Inverter2(BandLUMatrix X)
{
Matrix Y = X.i();
Y.Release();
return Y.ForReturn();
}
ReturnMatrix LU1(const Matrix& A)
{
Tracer et1("LU1 - Crout");
CroutMatrix X = A;
return X.for_return();
}
ReturnMatrix LU2(const Matrix& A)
{
Tracer et1("LU2 - Crout");
CroutMatrix X = A; X.release();
return X.for_return();
}
ReturnMatrix LU3(const Matrix& A)
{
Tracer et1("LU3 - Crout");
CroutMatrix* X = new CroutMatrix(A); MatrixErrorNoSpace(X);
X->release_and_delete();
return X->for_return();
}
ReturnMatrix LU1(const BandMatrix& A)
{
Tracer et1("LU1 - BandLU");
BandLUMatrix X = A;
return X.for_return();
}
ReturnMatrix LU2(const BandMatrix& A)
{
Tracer et1("LU2 - BandLU");
BandLUMatrix X = A; X.release();
return X.for_return();
}
ReturnMatrix LU3(const BandMatrix& A)
{
Tracer et1("LU3 - BandLU");
BandLUMatrix* X = new BandLUMatrix(A); MatrixErrorNoSpace(X);
X->release_and_delete();
return X->for_return();
}
void CircularShift(const Matrix& X1, int first, int last)
{
Matrix X; UpperTriangularMatrix U1, U2;
int n = X1.Ncols();
// Try right circular shift of columns
X = X1; QRZ(X, U1);
RightCircularUpdateCholesky(U1, first, last);
X = X1.Columns(1,first-1) | X1.Column(last)
| X1.Columns(first,last-1) | X1.Columns(last+1,n);
QRZ(X, U2);
X = U1 - U2; Clean(X, 0.000000001); Print(X);
// Try left circular shift of columns
X = X1; QRZ(X, U1);
LeftCircularUpdateCholesky(U1, first, last);
X = X1.Columns(1,first-1) | X1.Columns(first+1,last)
| X1.Column(first) | X1.Columns(last+1,n);
QRZ(X, U2);
X = U1 - U2; Clean(X, 0.000000001); Print(X);
}
class TestUpdateQRZ
{
int m,n1,n2,n3;
Matrix X1, X2, X3;
MultWithCarry mwc; // Uniform random number generator
public:
void Reset();
TestUpdateQRZ(int mx, int n1x, int n2x=0, int n3x=0)
: m(mx), n1(n1x), n2(n2x), n3(n3x) { Reset(); }
void DoTest();
void ClearRow(int i) { X1.Row(i) = 0.0; }
void SetRow(int i, int j) { X1.Row(i) = X1.Row(j); }
};
void trymatd()
{
Tracer et("Thirteenth test of Matrix package");
Tracer::PrintTrace();
Matrix X(5,20);
int i,j;
for (j=1;j<=20;j++) X(1,j) = j+1;
for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001;
SymmetricMatrix S; S << X * X.t();
Matrix SM = X * X.t() - S;
Print(SM);
LowerTriangularMatrix L = Cholesky(S);
Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001);
Print(Diff);
{
Tracer et1("Stage 1");
LowerTriangularMatrix L1(5);
Matrix Xt = X.t(); Matrix Xt2 = Xt;
QRZT(X,L1);
Diff = L - L1; Clean(Diff,0.000000001); Print(Diff);
UpperTriangularMatrix Ut(5);
QRZ(Xt,Ut);
Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff);
Matrix Y(3,20);
for (j=1;j<=20;j++) Y(1,j) = 22-j;
for (i=2;i<=3;i++) for (j=1;j<=20; j++)
Y(i,j) = (long)Y(i-1,j) * j % 101;
Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y;
QRZT(X,Y,M); QRZ(Xt,Yt,Mt);
Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff);
Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff);
Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff);
Diff = Y2 * Xt2 * S.i() - M * L.i();
Clean(Diff,0.000000001); Print(Diff);
}
ColumnVector C1(5);
{
Tracer et1("Stage 2");
X.ReSize(5,5);
for (j=1;j<=5;j++) X(1,j) = j+1;
for (i=2;i<=5;i++) for (j=1;j<=5; j++)
X(i,j) = (long)X(i-1,j) * j % 1001;
for (i=1;i<=5;i++) C1(i) = i*i;
CroutMatrix A = X;
ColumnVector C2 = A.i() * C1; C1 = X.i() * C1;
X = C1 - C2; Clean(X,0.000000001); Print(X);
}
{
Tracer et1("Stage 3");
X.ReSize(7,7);
for (j=1;j<=7;j++) X(1,j) = j+1;
for (i=2;i<=7;i++) for (j=1;j<=7; j++)
X(i,j) = (long)X(i-1,j) * j % 1001;
C1.ReSize(7);
for (i=1;i<=7;i++) C1(i) = i*i;
RowVector R1 = C1.t();
Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001);
Print(Diff);
}
{
Tracer et1("Stage 4");
X.ReSize(5,5);
for (j=1;j<=5;j++) X(1,j) = j+1;
for (i=2;i<=5;i++) for (j=1;j<=5; j++)
X(i,j) = (long)X(i-1,j) * j % 1001;
C1.ReSize(5);
for (i=1;i<=5;i++) C1(i) = i*i;
CroutMatrix A1 = X*X;
ColumnVector C2 = A1.i() * C1; C1 = X.i() * C1; C1 = X.i() * C1;
X = C1 - C2; Clean(X,0.000000001); Print(X);
}
{
Tracer et1("Stage 5");
int n = 40;
SymmetricBandMatrix B(n,2); B = 0.0;
for (i=1; i<=n; i++)
{
B(i,i) = 6;
if (i<=n-1) B(i,i+1) = -4;
if (i<=n-2) B(i,i+2) = 1;
}
B(1,1) = 5; B(n,n) = 5;
SymmetricMatrix A = B;
ColumnVector X(n);
X(1) = 429;
for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001;
X = X / 100000L;
// the matrix B is rather ill-conditioned so the difficulty is getting
// good agreement (we have chosen X very small) may not be surprising;
// maximum element size in B.i() is around 1400
ColumnVector Y1 = A.i() * X;
LowerTriangularMatrix C1 = Cholesky(A);
ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1;
Clean(Y2, 0.000000001); Print(Y2);
UpperTriangularMatrix CU = C1.t().i();
LowerTriangularMatrix CL = C1.i();
Y2 = CU * (CL * X) - Y1;
Clean(Y2, 0.000000001); Print(Y2);
Y2 = B.i() * X - Y1; Clean(Y2, 0.000000001); Print(Y2);
LowerBandMatrix C2 = Cholesky(B);
Matrix M = C2 - C1; Clean(M, 0.000000001); Print(M);
ColumnVector Y3 = C2.t().i() * (C2.i() * X) - Y1;
Clean(Y3, 0.000000001); Print(Y3);
CU = C1.t().i();
CL = C1.i();
Y3 = CU * (CL * X) - Y1;
Clean(Y3, 0.000000001); Print(Y3);
Y3 = B.i() * X - Y1; Clean(Y3, 0.000000001); Print(Y3);
SymmetricMatrix AI = A.i();
Y2 = AI*X - Y1; Clean(Y2, 0.000000001); Print(Y2);
SymmetricMatrix BI = B.i();
BandMatrix C = B; Matrix CI = C.i();
M = A.i() - CI; Clean(M, 0.000000001); Print(M);
M = B.i() - CI; Clean(M, 0.000000001); Print(M);
M = AI-BI; Clean(M, 0.000000001); Print(M);
M = AI-CI; Clean(M, 0.000000001); Print(M);
M = A; AI << M; M = AI-A; Clean(M, 0.000000001); Print(M);
C = B; BI << C; M = BI-B; Clean(M, 0.000000001); Print(M);
}
{
Tracer et1("Stage 5");
SymmetricMatrix A(4), B(4);
A << 5
<< 1 << 4
<< 2 << 1 << 6
<< 1 << 0 << 1 << 7;
B << 8
<< 1 << 5
<< 1 << 0 << 9
<< 2 << 1 << 0 << 6;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -