⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 attributeselectedclassifier.java

📁 分类的属性选择算法
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
      +"during the attribute selection phase before the classifier is "      +"invoked.";  }  /**   * Sets the attribute evaluator   *   * @param evaluator the evaluator with all options set.   */  public void setEvaluator(ASEvaluation evaluator) {    m_Evaluator = evaluator;  }  /**   * Gets the attribute evaluator used   *   * @return the attribute evaluator   */  public ASEvaluation getEvaluator() {    return m_Evaluator;  }  /**   * Gets the evaluator specification string, which contains the class name of   * the attribute evaluator and any options to it   *   * @return the evaluator string.   */  protected String getEvaluatorSpec() {        ASEvaluation e = getEvaluator();    if (e instanceof OptionHandler) {      return e.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)e).getOptions());    }    return e.getClass().getName();  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String searchTipText() {    return "Set the search method. This search method is used "      +"during the attribute selection phase before the classifier is "      +"invoked.";  }    /**   * Sets the search method   *   * @param search the search method with all options set.   */  public void setSearch(ASSearch search) {    m_Search = search;  }  /**   * Gets the search method used   *   * @return the search method   */  public ASSearch getSearch() {    return m_Search;  }  /**   * Gets the search specification string, which contains the class name of   * the search method and any options to it   *   * @return the search string.   */  protected String getSearchSpec() {        ASSearch s = getSearch();    if (s instanceof OptionHandler) {      return s.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)s).getOptions());    }    return s.getClass().getName();  }  /**   * Build the classifier on the dimensionally reduced data.   *   * @param data the training data   * @exception Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    if (m_Classifier == null) {      throw new Exception("No base classifier has been set!");    }    if (m_Evaluator == null) {      throw new Exception("No attribute evaluator has been set!");    }    if (m_Search == null) {      throw new Exception("No search method has been set!");    }       Instances newData = new Instances(data);    newData.deleteWithMissingClass();    if (newData.classAttribute().isNominal()) {      m_numClasses = newData.classAttribute().numValues();    } else {      m_numClasses = 1;    }    m_AttributeSelection = new AttributeSelection();    m_AttributeSelection.setEvaluator(m_Evaluator);    m_AttributeSelection.setSearch(m_Search);    long start = System.currentTimeMillis();    m_AttributeSelection.SelectAttributes(newData);    long end = System.currentTimeMillis();    newData = m_AttributeSelection.reduceDimensionality(newData);    m_Classifier.buildClassifier(newData);    long end2 = System.currentTimeMillis();    m_numAttributesSelected = m_AttributeSelection.numberAttributesSelected();    m_ReducedHeader = new Instances(newData, 0);    m_selectionTime = (double)(end - start);    m_totalTime = (double)(end2 - start);  }  /**   * Classifies a given instance after attribute selection   *   * @param instance the instance to be classified   * @exception Exception if instance could not be classified   * successfully   */  public double [] distributionForInstance(Instance instance)    throws Exception {    if (m_AttributeSelection == null) {      throw new Exception("AttributeSelectedClassifier: No model built yet!");    }    Instance newInstance = m_AttributeSelection.reduceDimensionality(instance);    if (m_Classifier instanceof DistributionClassifier) {      return ((DistributionClassifier)m_Classifier)	.distributionForInstance(newInstance);    }    double pred = m_Classifier.classifyInstance(newInstance);    double [] result = new double[m_numClasses];    if (Instance.isMissingValue(pred)) {      return result;    }    switch (instance.classAttribute().type()) {    case Attribute.NOMINAL:      result[(int) pred] = 1.0;      break;    case Attribute.NUMERIC:      result[0] = pred;      break;    default:      throw new Exception("Unknown class type");    }    return result;  }  /**   * Output a representation of this classifier   */  public String toString() {    if (m_AttributeSelection == null) {      return "AttributeSelectedClassifier: No model built yet.";    }    StringBuffer result = new StringBuffer();    result.append("AttributeSelectedClassifier:\n\n");    result.append(m_AttributeSelection.toResultsString());    result.append("\n\nHeader of reduced data:\n"+m_ReducedHeader.toString());    result.append("\n\nClassifier Model\n"+m_Classifier.toString());    return result.toString();  }  /**   * Additional measure --- number of attributes selected   * @return the number of attributes selected   */  public double measureNumAttributesSelected() {    return m_numAttributesSelected;  }  /**   * Additional measure --- time taken (milliseconds) to select the attributes   * @return the time taken to select attributes   */  public double measureSelectionTime() {    return m_selectionTime;  }  /**   * Additional measure --- time taken (milliseconds) to select attributes   * and build the classifier   * @return the total time (select attributes + build classifier)   */  public double measureTime() {    return m_totalTime;  }  /**   * Returns an enumeration of the additional measure names   * @return an enumeration of the measure names   */  public Enumeration enumerateMeasures() {    Vector newVector = new Vector(3);    newVector.addElement("measureNumAttributesSelected");    newVector.addElement("measureSelectionTime");    newVector.addElement("measureTime");    if (m_Classifier instanceof AdditionalMeasureProducer) {      Enumeration en = ((AdditionalMeasureProducer)m_Classifier).	enumerateMeasures();      while (en.hasMoreElements()) {	String mname = (String)en.nextElement();	newVector.addElement(mname);      }    }    return newVector.elements();  }    /**   * Returns the value of the named measure   * @param measureName the name of the measure to query for its value   * @return the value of the named measure   * @exception IllegalArgumentException if the named measure is not supported   */  public double getMeasure(String additionalMeasureName) {    if (additionalMeasureName.compareTo("measureNumAttributesSelected") == 0) {      return measureNumAttributesSelected();    } else if (additionalMeasureName.compareTo("measureSelectionTime") == 0) {      return measureSelectionTime();    } else if (additionalMeasureName.compareTo("measureTime") == 0) {      return measureTime();    } else if (m_Classifier instanceof AdditionalMeasureProducer) {      return ((AdditionalMeasureProducer)m_Classifier).	getMeasure(additionalMeasureName);    } else {      throw new IllegalArgumentException(additionalMeasureName 			  + " not supported (AttributeSelectedClassifier)");    }  }  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file [-T test file] [-c class index]   */  public static void main(String [] argv) {    try {      System.out.println(Evaluation			 .evaluateModel(new AttributeSelectedClassifier(),					argv));    } catch (Exception e) {      System.err.println(e.getMessage());      e.printStackTrace();    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -