⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bagging.java

📁 分类算法
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Bagging.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers;import java.util.Enumeration;import java.util.Vector;import java.util.Random;import weka.core.Instance;import weka.core.Instances;import weka.core.OptionHandler;import weka.core.Option;import weka.core.Utils;/** * Class for bagging a classifier. For more information, see<p> * * Leo Breiman (1996). <i>Bagging predictors</i>. Machine * Learning, 24(2):123-140. <p> * * Valid options are:<p> * * -W classname <br> * Specify the full class name of a weak classifier as the basis for  * bagging (required).<p> * * -I num <br> * Set the number of bagging iterations (default 10). <p> * * -S seed <br> * Random number seed for resampling (default 1). <p> * * -P num <br> * Size of each bag, as a percentage of the training size (default 100). <p> * * Options after -- are passed to the designated classifier.<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (len@intelligenesis.net) * @version $Revision: 1.14 $ */public class Bagging extends DistributionClassifier   implements OptionHandler {  /** The model base classifier to use */  protected Classifier m_Classifier = new weka.classifiers.ZeroR();    /** Array for storing the generated base classifiers. */  protected Classifier[] m_Classifiers;    /** The number of iterations. */  protected int m_NumIterations = 10;  /** The seed for random number generation. */  protected int m_Seed = 1;  /** The size of each bag sample, as a percentage of the training size */  protected int m_BagSizePercent = 100;  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector newVector = new Vector(4);    newVector.addElement(new Option(	      "\tNumber of bagging iterations.\n"	      + "\t(default 10)",	      "I", 1, "-I <num>"));    newVector.addElement(new Option(	      "\tFull name of classifier to bag.\n"	      + "\teg: weka.classifiers.NaiveBayes",	      "W", 1, "-W"));    newVector.addElement(new Option(              "\tSeed for random number generator.\n"              + "\t(default 1)",              "S", 1, "-S"));    newVector.addElement(new Option(              "\tSize of each bag, as a percentage of the\n"               + "\ttraining set size. (default 100)",              "P", 1, "-P"));    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      newVector.addElement(new Option(	     "",	     "", 0, "\nOptions specific to classifier "	     + m_Classifier.getClass().getName() + ":"));      Enumeration enum = ((OptionHandler)m_Classifier).listOptions();      while (enum.hasMoreElements()) {	newVector.addElement(enum.nextElement());      }    }    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -W classname <br>   * Specify the full class name of a weak classifier as the basis for    * bagging (required).<p>   *   * -I num <br>   * Set the number of bagging iterations (default 10). <p>   *   * -S seed <br>   * Random number seed for resampling (default 1).<p>   *   * -P num <br>   * Size of each bag, as a percentage of the training size (default 100). <p>   *   * Options after -- are passed to the designated classifier.<p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        String bagIterations = Utils.getOption('I', options);    if (bagIterations.length() != 0) {      setNumIterations(Integer.parseInt(bagIterations));    } else {      setNumIterations(10);    }    String seed = Utils.getOption('S', options);    if (seed.length() != 0) {      setSeed(Integer.parseInt(seed));    } else {      setSeed(1);    }    String bagSize = Utils.getOption('P', options);    if (bagSize.length() != 0) {      setBagSizePercent(Integer.parseInt(bagSize));    } else {      setBagSizePercent(100);    }    String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    setClassifier(Classifier.forName(classifierName,				     Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] classifierOptions = new String [0];    if ((m_Classifier != null) && 	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String [classifierOptions.length + 9];    int current = 0;    options[current++] = "-S"; options[current++] = "" + getSeed();    options[current++] = "-I"; options[current++] = "" + getNumIterations();    options[current++] = "-P"; options[current++] = "" + getBagSizePercent();    if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Set the classifier for bagging.    *   * @param newClassifier the Classifier to use.   */  public void setClassifier(Classifier newClassifier) {    m_Classifier = newClassifier;  }  /**   * Get the classifier used as the classifier   *   * @return the classifier used as the classifier   */  public Classifier getClassifier() {    return m_Classifier;  }  /**   * Gets the size of each bag, as a percentage of the training set size.   *   * @return the bag size, as a percentage.   */  public int getBagSizePercent() {    return m_BagSizePercent;  }    /**   * Sets the size of each bag, as a percentage of the training set size.   *   * @param newBagSizePercent the bag size, as a percentage.   */  public void setBagSizePercent(int newBagSizePercent) {    m_BagSizePercent = newBagSizePercent;  }    /**   * Sets the number of bagging iterations   */  public void setNumIterations(int numIterations) {    m_NumIterations = numIterations;  }  /**   * Gets the number of bagging iterations   *   * @return the maximum number of bagging iterations   */  public int getNumIterations() {        return m_NumIterations;  }  /**   * Set the seed for random number generation.   *   * @param seed the seed    */  public void setSeed(int seed) {    m_Seed = seed;  }  /**   * Gets the seed for the random number generations   *   * @return the seed for the random number generation   */  public int getSeed() {        return m_Seed;  }  /**   * Bagging method.   *   * @param data the training data to be used for generating the   * bagged classifier.   * @exception Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    if (m_Classifier == null) {      throw new Exception("A base classifier has not been specified!");    }    if (data.checkForStringAttributes()) {      throw new Exception("Can't handle string attributes!");    }    m_Classifiers = Classifier.makeCopies(m_Classifier, m_NumIterations);    int bagSize = data.numInstances() * m_BagSizePercent / 100;    Random random = new Random(m_Seed);    for (int j = 0; j < m_Classifiers.length; j++) {      Instances bagData = new Instances(data, bagSize);      while (bagData.numInstances() < bagSize) {	int i = (int) (random.nextDouble() * 		   (double) data.numInstances());	bagData.add(data.instance(i));      }      m_Classifiers[j].buildClassifier(bagData);    }  }  /**   * Calculates the class membership probabilities for the given test instance.   *   * @param instance the instance to be classified   * @return preedicted class probability distribution   * @exception Exception if distribution can't be computed successfully   */  public double[] distributionForInstance(Instance instance) throws Exception {    double [] sums = new double [instance.numClasses()], newProbs;         for (int i = 0; i < m_NumIterations; i++) {      if (instance.classAttribute().isNumeric() == true) {	sums[0] += m_Classifiers[i].classifyInstance(instance);      } else if (m_Classifiers[i] instanceof DistributionClassifier) {	newProbs = ((DistributionClassifier)m_Classifiers[i]).	  distributionForInstance(instance);	for (int j = 0; j < newProbs.length; j++)	  sums[j] += newProbs[j];      } else {	sums[(int)m_Classifiers[i].classifyInstance(instance)]++;      }    }    if (instance.classAttribute().isNumeric() == true) {      sums[0] /= (double)m_NumIterations;      return sums;    } else if (Utils.eq(Utils.sum(sums), 0)) {      return sums;    } else {      Utils.normalize(sums);      return sums;    }  }  /**   * Returns description of the bagged classifier.   *   * @return description of the bagged classifier as a string   */  public String toString() {        if (m_Classifiers == null) {      return "Bagging: No model built yet.";    }    StringBuffer text = new StringBuffer();    text.append("All the base classifiers: \n\n");    for (int i = 0; i < m_Classifiers.length; i++)      text.append(m_Classifiers[i].toString() + "\n\n");        return text.toString();  }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {       try {      System.out.println(Evaluation.			 evaluateModel(new Bagging(), argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -