⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 deflate.c

📁 linux上播放midi音乐,但是要一些设置.可网上查找. 软件名称: TiMidity++-2.13.0.tar
💻 C
📖 第 1 页 / 共 5 页
字号:
local void ct_init(DeflateHandler encoder){    int n;	/* iterates over tree elements */    int bits;	/* bit counter */    int length;	/* length value */    int code;	/* code value */    int dist;	/* distance index */    if(encoder->static_dtree[0].Len != 0) return; /* ct_init already called */    encoder->l_desc.dyn_tree	= encoder->dyn_ltree;    encoder->l_desc.static_tree = encoder->static_ltree;    encoder->l_desc.extra_bits	= extra_lbits;    encoder->l_desc.extra_base	= LITERALS + 1;    encoder->l_desc.elems	= L_CODES;    encoder->l_desc.max_length	= MAX_BITS;    encoder->l_desc.max_code	= 0;    encoder->d_desc.dyn_tree	= encoder->dyn_dtree;    encoder->d_desc.static_tree = encoder->static_dtree;    encoder->d_desc.extra_bits	= extra_dbits;    encoder->d_desc.extra_base	= 0;    encoder->d_desc.elems	= D_CODES;    encoder->d_desc.max_length	= MAX_BITS;    encoder->d_desc.max_code	= 0;    encoder->bl_desc.dyn_tree	 = encoder->bl_tree;    encoder->bl_desc.static_tree = NULL;    encoder->bl_desc.extra_bits	 = extra_blbits;    encoder->bl_desc.extra_base	 = 0;    encoder->bl_desc.elems	 = BL_CODES;    encoder->bl_desc.max_length	 = MAX_BL_BITS;    encoder->bl_desc.max_code	 = 0;    /* Initialize the mapping length (0..255) -> length code (0..28) */    length = 0;    for(code = 0; code < LENGTH_CODES-1; code++) {	encoder->base_length[code] = length;	for(n = 0; n < (1<<extra_lbits[code]); n++) {	    encoder->length_code[length++] = (uch)code;	}    }    Assert (length == 256, "ct_init: length != 256");    /* Note that the length 255 (match length 258) can be represented     * in two different ways: code 284 + 5 bits or code 285, so we     * overwrite length_code[255] to use the best encoding:     */    encoder->length_code[length-1] = (uch)code;    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */    dist = 0;    for(code = 0 ; code < 16; code++) {	encoder->base_dist[code] = dist;	for(n = 0; n < (1<<extra_dbits[code]); n++) {	    encoder->dist_code[dist++] = (uch)code;	}    }    Assert (dist == 256, "ct_init: dist != 256");    dist >>= 7; /* from now on, all distances are divided by 128 */    for( ; code < D_CODES; code++) {	encoder->base_dist[code] = dist << 7;	for(n = 0; n < (1<<(extra_dbits[code]-7)); n++) {	    encoder->dist_code[256 + dist++] = (uch)code;	}    }    Assert (dist == 256, "ct_init: 256+dist != 512");    /* Construct the codes of the static literal tree */    for(bits = 0; bits <= MAX_BITS; bits++) encoder->bl_count[bits] = 0;    n = 0;    while(n <= 143) encoder->static_ltree[n++].Len = 8, encoder->bl_count[8]++;    while(n <= 255) encoder->static_ltree[n++].Len = 9, encoder->bl_count[9]++;    while(n <= 279) encoder->static_ltree[n++].Len = 7, encoder->bl_count[7]++;    while(n <= 287) encoder->static_ltree[n++].Len = 8, encoder->bl_count[8]++;    /* Codes 286 and 287 do not exist, but we must include them in the     * tree construction to get a canonical Huffman tree (longest code     * all ones)     */    gen_codes(encoder, (ct_data near *)encoder->static_ltree, L_CODES+1);    /* The static distance tree is trivial: */    for(n = 0; n < D_CODES; n++) {	encoder->static_dtree[n].Len = 5;	encoder->static_dtree[n].Code = bi_reverse(n, 5);    }    /* Initialize the first block of the first file: */    init_block(encoder);}/* =========================================================================== * Initialize a new block. */local void init_block(DeflateHandler encoder){    int n; /* iterates over tree elements */    /* Initialize the trees. */    for(n = 0; n < L_CODES;  n++) encoder->dyn_ltree[n].Freq = 0;    for(n = 0; n < D_CODES;  n++) encoder->dyn_dtree[n].Freq = 0;    for(n = 0; n < BL_CODES; n++) encoder->bl_tree[n].Freq = 0;    encoder->dyn_ltree[END_BLOCK].Freq = 1;    encoder->opt_len = encoder->static_len = 0L;    encoder->last_lit = encoder->last_dist = encoder->last_flags = 0;    encoder->flags = 0;    encoder->flag_bit = 1;}/* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */local void pqdownheap(    DeflateHandler encoder,    ct_data near *tree,	/* the tree to restore */    int k)		/* node to move down */{    int v = encoder->heap[k];    int j = k << 1;  /* left son of k */    while(j <= encoder->heap_len) {	/* Set j to the smallest of the two sons: */	if(j < encoder->heap_len &&	   SMALLER(tree, encoder->heap[j+1], encoder->heap[j]))	    j++;	/* Exit if v is smaller than both sons */	if(SMALLER(tree, v, encoder->heap[j]))	    break;	/* Exchange v with the smallest son */	encoder->heap[k] = encoder->heap[j];	k = j;	/* And continue down the tree, setting j to the left son of k */	j <<= 1;    }    encoder->heap[k] = v;}/* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and *    above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the *     array bl_count contains the frequencies for each bit length. *     The length opt_len is updated; static_len is also updated if stree is *     not null. */local void gen_bitlen(    DeflateHandler encoder,    tree_desc near *desc) /* the tree descriptor */{    ct_data near *tree	= desc->dyn_tree;    int near *extra	= desc->extra_bits;    int base		= desc->extra_base;    int max_code	= desc->max_code;    int max_length	= desc->max_length;    ct_data near *stree = desc->static_tree;    int h;		/* heap index */    int n, m;		/* iterate over the tree elements */    int bits;		/* bit length */    int xbits;		/* extra bits */    ush f;		/* frequency */    int overflow = 0;	/* number of elements with bit length too large */    for(bits = 0; bits <= MAX_BITS; bits++)	encoder->bl_count[bits] = 0;    /* In a first pass, compute the optimal bit lengths (which may     * overflow in the case of the bit length tree).     */    tree[encoder->heap[encoder->heap_max]].Len = 0; /* root of the heap */    for(h = encoder->heap_max+1; h < HEAP_SIZE; h++) {	n = encoder->heap[h];	bits = tree[tree[n].Dad].Len + 1;	if(bits > max_length)	    bits = max_length, overflow++;	tree[n].Len = (ush)bits;	/* We overwrite tree[n].Dad which is no longer needed */	if(n > max_code)	    continue; /* not a leaf node */	encoder->bl_count[bits]++;	xbits = 0;	if(n >= base)	    xbits = extra[n-base];	f = tree[n].Freq;	encoder->opt_len += (ulg)f * (bits + xbits);	if(stree)	    encoder->static_len += (ulg)f * (stree[n].Len + xbits);    }    if(overflow == 0) return;    Trace((stderr,"\nbit length overflow\n"));    /* This happens for example on obj2 and pic of the Calgary corpus */    /* Find the first bit length which could increase: */    do {	bits = max_length-1;	while(encoder->bl_count[bits] == 0) bits--;	encoder->bl_count[bits]--;	/* move one leaf down the tree */	encoder->bl_count[bits+1] += 2; /* move one overflow item as its brother */	encoder->bl_count[max_length]--;	/* The brother of the overflow item also moves one step up,	 * but this does not affect bl_count[max_length]	 */	overflow -= 2;    } while(overflow > 0);    /* Now recompute all bit lengths, scanning in increasing frequency.     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all     * lengths instead of fixing only the wrong ones. This idea is taken     * from 'ar' written by Haruhiko Okumura.)     */    for(bits = max_length; bits != 0; bits--) {	n = encoder->bl_count[bits];	while(n != 0) {	    m = encoder->heap[--h];	    if(m > max_code) continue;	    if(tree[m].Len != (unsigned) bits) {		Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));		encoder->opt_len +=		    ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;		tree[m].Len = (ush)bits;	    }	    n--;	}    }}/* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non *     zero code length. */local void gen_codes(    DeflateHandler encoder,    ct_data near *tree,	/* the tree to decorate */    int max_code)	/* largest code with non zero frequency */{    ush next_code[MAX_BITS+1];	/* next code value for each bit length */    ush code = 0;		/* running code value */    int bits;			/* bit index */    int n;			/* code index */    /* The distribution counts are first used to generate the code values     * without bit reversal.     */    for(bits = 1; bits <= MAX_BITS; bits++) {	next_code[bits] = code = (code + encoder->bl_count[bits-1]) << 1;    }    /* Check that the bit counts in bl_count are consistent. The last code     * must be all ones.     */    Assert (code + encoder->bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,	    "inconsistent bit counts");    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));    for(n = 0;	 n <= max_code; n++) {	int len = tree[n].Len;	if(len == 0)	    continue;	/* Now reverse the bits */	tree[n].Code = bi_reverse(next_code[len]++, len);	Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",	     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));    }}/* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length *     and corresponding code. The length opt_len is updated; static_len is *     also updated if stree is not null. The field max_code is set. */local void build_tree(    DeflateHandler encoder,    tree_desc near *desc) /* the tree descriptor */{    ct_data near *tree	= desc->dyn_tree;    ct_data near *stree	= desc->static_tree;    int elems		= desc->elems;    int n, m;		/* iterate over heap elements */    int max_code = -1;	/* largest code with non zero frequency */    int node = elems;	/* next internal node of the tree */    /* Construct the initial heap, with least frequent element in     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].     * heap[0] is not used.     */    encoder->heap_len = 0;    encoder->heap_max = HEAP_SIZE;    for(n = 0; n < elems; n++) {	if(tree[n].Freq != 0) {	    encoder->heap[++encoder->heap_len] = max_code = n;	    encoder->depth[n] = 0;	} else {	    tree[n].Len = 0;	}    }    /* The pkzip format requires that at least one distance code exists,     * and that at least one bit should be sent even if there is only one     * possible code. So to avoid special checks later on we force at least     * two codes of non zero frequency.     */    while(encoder->heap_len < 2) {	int new = encoder->heap[++encoder->heap_len] =	    (max_code < 2 ? ++max_code : 0);	tree[new].Freq = 1;	encoder->depth[new] = 0;	encoder->opt_len--;	if(stree)	    encoder->static_len -= stree[new].Len;	/* new is 0 or 1 so it does not have extra bits */    }    desc->max_code = max_code;    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,     * establish sub-heaps of increasing lengths:     */    for(n = encoder->heap_len/2; n >= 1; n--)	pqdownheap(encoder, tree, n);    /* Construct the Huffman tree by repeatedly combining the least two     * frequent nodes.     */    do {	n = encoder->heap[SMALLEST];	encoder->heap[SMALLEST] = encoder->heap[encoder->heap_len--];	pqdownheap(encoder, tree, SMALLEST);	m = encoder->heap[SMALLEST];  /* m = node of next least frequency */	/* keep the nodes sorted by frequency */	encoder->heap[--encoder->heap_max] = n;	encoder->heap[--encoder->heap_max] = m;	/* Create a new node father of n and m */	tree[node].Freq = tree[n].Freq + tree[m].Freq;	encoder->depth[node] =	    (uch)(MAX(encoder->depth[n], encoder->depth[m]) + 1);	tree[n].Dad = tree[m].Dad = (ush)node;	/* and insert the new node in the heap */	encoder->heap[SMALLEST] = node++;	pqdownheap(encoder, tree, SMALLEST);    } while(encoder->heap_len >= 2);    encoder->heap[--encoder->heap_max] = encoder->heap[SMALLEST];    /* At this point, the fields freq and dad are set. We can now     * generate the bit lengths.     */    gen_bitlen(encoder, (tree_desc near *)desc);    /* The field len is now set, we can generate the bit codes */    gen_codes (encoder, (ct_data near *)tree, max_code);}/* ===========================================================================

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -