📄 abstractgraph.java
字号:
package dsa.adt;
import dsa.adt.Graph;
import dsa.adt.Vertex;
import dsa.adt.List;
import dsa.adt.Edge;
import dsa.exception.UnsupportedOperation;
import dsa.adt.Path;
public abstract class AbstractGraph implements Graph {
protected LinkedList vertexs;//顶点表
protected LinkedList edges; //边表
protected int type; //图的类型
public AbstractGraph(int type){
this.type = type;
vertexs = new LinkedListDLNode();
edges = new LinkedListDLNode();
}
//返回图的类型
public int getType(){
return type;
}
//返回图的顶点数
public int getVexNum() {
return vertexs.getSize();
}
//返回图的边数
public int getEdgeNum() {
return edges.getSize();
}
//返回图的所有顶点
public Iterator getVertex() {
return vertexs.elements();
}
//返回图的所有边
public Iterator getEdge() {
return edges.elements();
}
//添加一个顶点v
public Node insert(Vertex v) {
return vertexs.insertLast(v);
}
//添加一条边e
public Node insert(Edge e) {
return edges.insertLast(e);
}
//判断顶点u、v是否邻接,即是否有边从u到v
public boolean areAdjacent(Vertex u, Vertex v) {
return edgeFromTo(u,v)!=null;
}
//对图进行深度优先遍历
public Iterator DFSTraverse(Vertex v) {
LinkedList traverseSeq = new LinkedListDLNode();//遍历结果
resetVexStatus(); //重置顶点状态
DFS(v, traverseSeq); //从v点出发深度优先搜索
Iterator it = getVertex(); //从图中未曾访问的其他顶点出发重新搜索
for(it.first(); !it.isDone(); it.next()){
Vertex u = (Vertex)it.currentItem();
if (!u.isVisited()) DFS(u, traverseSeq);
}
return traverseSeq.elements();
}
//深度优先的递归算法
private void DFSRecursion(Vertex v, LinkedList list){
v.setToVisited();
list.insertLast(v);
Iterator it = adjVertexs(v);//取得顶点v的所有邻接点
for(it.first(); !it.isDone(); it.next()){
Vertex u = (Vertex)it.currentItem();
if (!u.isVisited()) DFSRecursion(u,list);
}
}
//深度优先的非递归算法
private void DFS(Vertex v, LinkedList list){
Stack s = new StackSLinked();
s.push(v);
while (!s.isEmpty()){
Vertex u = (Vertex)s.pop();
if (!u.isVisited()){
u.setToVisited();
list.insertLast(u);
Iterator it = adjVertexs(u);
for(it.first(); !it.isDone(); it.next()){
Vertex adj = (Vertex)it.currentItem();
if (!adj.isVisited()) s.push(adj);
}
}//if
}//while
}
//对图进行广度优先遍历
public Iterator BFSTraverse(Vertex v) {
LinkedList traverseSeq = new LinkedListDLNode();//遍历结果
resetVexStatus(); //重置顶点状态
BFS(v, traverseSeq); //从v点出发广度优先搜索
Iterator it = getVertex(); //从图中未曾访问的其他顶点出发重新搜索
for(it.first(); !it.isDone(); it.next()){
Vertex u = (Vertex)it.currentItem();
if (!u.isVisited()) BFS(u, traverseSeq);
}
return traverseSeq.elements();
}
private void BFS(Vertex v, LinkedList list){
Queue q = new QueueSLinked();
v.setToVisited();
list.insertLast(v);
q.enqueue(v);
while (!q.isEmpty()){
Vertex u = (Vertex)q.dequeue();
Iterator it = adjVertexs(u);
for(it.first(); !it.isDone(); it.next()){
Vertex adj = (Vertex)it.currentItem();
if (!adj.isVisited()){
adj.setToVisited();
list.insertLast(adj);
q.enqueue(adj);
}//if
}//for
}//while
}
//求顶点v到其他顶点的最短路径
public Iterator shortestPath(Vertex v) {
LinkedList sPath = new LinkedListDLNode();
resetVexStatus();//重置图中各顶点的状态信息
Iterator it = getVertex();//初始化,将v到各顶点的最短距离初始化为由v直接可达的距离
for(it.first(); !it.isDone(); it.next()){
Vertex u = (Vertex)it.currentItem();
int weight = Integer.MAX_VALUE;
Edge e = edgeFromTo(v,u);
if (e!=null)
weight = e.getWeight();
if(u==v) weight = 0;
Path p = new Path(weight,v,u);
setPath(u, p);
}
v.setToVisited();//顶点v进入集合S,以visited=true表示属于S,否则不属于S
sPath.insertLast(getPath(v));//求得的最短路径进入链接表
for (int t=1;t<getVexNum();t++){//进行n-1次循环找到n-1条最短路径
Vertex k = selectMin(it);//中间顶点k。可能选出无穷大距离的点,但不会为空
k.setToVisited(); //顶点k加入S
sPath.insertLast(getPath(k)); //求得的最短路径进入链接表
int distK = getDistance(k); //以k为中间顶点修改v到V-S中顶点的当前最短路径
Iterator adjIt = adjVertexs(k); //取出k的所有邻接点
for(adjIt.first(); !adjIt.isDone(); adjIt.next()){
Vertex adjV = (Vertex)adjIt.currentItem();
Edge e = edgeFromTo(k,adjV);
if ((long)distK+(long)e.getWeight()<(long)getDistance(adjV)){//发现更短的路径
setDistance(adjV, distK+e.getWeight());
amendPathInfo(k,adjV); //以k的路径信息修改adjV的路径信息
}
}//for
}//for(int t=1...
return sPath.elements();
}
//在顶点集合中选择路径距离最小的
protected Vertex selectMin(Iterator it){
Vertex min = null;
for(it.first(); !it.isDone(); it.next()){
Vertex v = (Vertex)it.currentItem();
if(!v.isVisited()){ min = v; break;}
}
for(; !it.isDone(); it.next()){
Vertex v = (Vertex)it.currentItem();
if(!v.isVisited()&&getDistance(v)<getDistance(min))
min = v;
}
return min;
}
//修改到终点的路径信息
protected void amendPathInfo(Vertex mid, Vertex end){
Iterator it = getPath(mid).getPathInfo();
getPath(end).clearPathInfo();
for(it.first(); !it.isDone(); it.next()){
getPath(end).addPathInfo(it.currentItem());
}
getPath(end).addPathInfo(mid.getInfo());
}
//删除一个顶点v
public abstract void remove(Vertex v);
//删除一条边e
public abstract void remove(Edge e);
//返回从u指向v的边,不存在则返回null
public abstract Edge edgeFromTo(Vertex u, Vertex v);
//返回从u出发可以直接到达的邻接顶点
public abstract Iterator adjVertexs(Vertex u);
//求无向图的最小生成树,如果是有向图不支持此操作
public abstract void generateMST() throws UnsupportedOperation;
//求有向图的拓扑序列,无向图不支持此操作
public abstract Iterator toplogicalSort() throws UnsupportedOperation;
//求有向无环图的关键路径,无向图不支持此操作
public abstract void criticalPath() throws UnsupportedOperation;
//辅助方法,重置图中各顶点的状态信息
protected void resetVexStatus(){
Iterator it = getVertex();
for(it.first(); !it.isDone(); it.next()){
Vertex u = (Vertex)it.currentItem();
u.resetStatus();
}
}
//重置图中各边的状态信息
protected void resetEdgeType(){
Iterator it = getEdge();
for(it.first(); !it.isDone(); it.next()){
Edge e = (Edge)it.currentItem();
e.resetType();
}
}
//求最短路径时,对v.application的操作
protected int getDistance(Vertex v){ return ((Path)v.getAppObj()).getDistance();}
protected void setDistance(Vertex v, int dis){ ((Path)v.getAppObj()).setDistance(dis);}
protected Path getPath(Vertex v){ return (Path)v.getAppObj();}
protected void setPath(Vertex v, Path p){ v.setAppObj(p);}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -