⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 strassen.java

📁 算法设计与分析实验
💻 JAVA
字号:
/*
 * Strassen.java
 *
 * Created on 2007年11月20日, 下午10:57
 *
 * To change this template, choose Tools | Template Manager
 * and open the template in the editor.
 */

/**
 *
 * @author 林凌 2005131346
 */
import java.io.*;
import java.util.*;
class matrix  //定义矩阵结构
{
    public int[][] m = new int[10][10];
}
public class Strassen
{
    public int IfIsEven(int n)//判断输入矩阵阶数是否为2^k
    {
        int a = 0,temp=n;
        while(temp%2==0)
        {
            if(temp%2==0) 
                temp/=2;
            else a=1;
        }
        if(temp==1) 
            a=0;
        return a;
    }
    public void Divide(matrix d,matrix d11,matrix d12,matrix d21,matrix d22,int n)//分解矩阵
    {
        int i,j;
        for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        {
            d11.m[i][j]=d.m[i][j];
            d12.m[i][j]=d.m[i][j+n];
            d21.m[i][j]=d.m[i+n][j];
            d22.m[i][j]=d.m[i+n][j+n];
        }
    }
    public matrix Merge(matrix a11,matrix a12,matrix a21,matrix a22,int n)//合并矩阵
    {
        int i,j;
        matrix a = new matrix();
        for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        {
            a.m[i][j]=a11.m[i][j];
            a.m[i][j+n]=a12.m[i][j];
            a.m[i+n][j]=a21.m[i][j];
            a.m[i+n][j+n]=a22.m[i][j];
        }
        return a;
    }
    public matrix TwoMatrixMultiply(matrix x,matrix y) //阶数为2的矩阵乘法
    {
        int m1,m2,m3,m4,m5,m6,m7;
        matrix z = new matrix();

        m1=(y.m[1][2] - y.m[2][2]) * x.m[1][1];
        m2=y.m[2][2] * (x.m[1][1] + x.m[1][2]);
        m3=(x.m[2][1] + x.m[2][2]) * y.m[1][1];
        m4=x.m[2][2] * (y.m[2][1] - y.m[1][1]);
        m5=(x.m[1][1] + x.m[2][2]) * (y.m[1][1]+y.m[2][2]);
        m6=(x.m[1][2] - x.m[2][2]) * (y.m[2][1]+y.m[2][2]);
        m7=(x.m[1][1] - x.m[2][1]) * (y.m[1][1]+y.m[1][2]);
        z.m[1][1] = m5 + m4 - m2 + m6;
        z.m[1][2] = m1 + m2;
        z.m[2][1] = m3 + m4;
        z.m[2][2] = m5 + m1 - m3 - m7;
        return z;
    }
    public matrix MatrixPlus(matrix f,matrix g,int n) //矩阵加法
    {
        int i,j;
        matrix h = new matrix();
        for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        h.m[i][j]=f.m[i][j]+g.m[i][j];
        return h;
    }
    public matrix MatrixMinus(matrix f,matrix g,int n) //矩阵减法方法
    {
        int i,j;
        matrix h = new matrix();
        for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        h.m[i][j]=f.m[i][j]-g.m[i][j];
        return h;
    }

    public matrix MatrixMultiply(matrix a,matrix b,int n) //矩阵乘法方法
    {
        int k;
        matrix a11,a12,a21,a22;
        a11 = new matrix();
        a12 = new matrix();
        a21 = new matrix();
        a22 = new matrix();
        matrix b11,b12,b21,b22;
        b11 = new matrix();
        b12 = new matrix();
        b21 = new matrix();
        b22 = new matrix();
        matrix c11,c12,c21,c22,c;
        c11 = new matrix();
        c12 = new matrix();
        c21 = new matrix();
        c22 = new matrix();
        c = new matrix();
        matrix m1,m2,m3,m4,m5,m6,m7;
        k=n;
        if(k==2)
        {
            c=TwoMatrixMultiply(a,b);
            return c;
        }
        else
        { 
            k=n/2;
            Divide(a,a11,a12,a21,a22,k); //拆分A、B、C矩阵
            Divide(b,b11,b12,b21,b22,k);
            Divide(c,c11,c12,c21,c22,k);
            
            m1=MatrixMultiply(a11,MatrixMinus(b12,b22,k),k);
            m2=MatrixMultiply(MatrixPlus(a11,a12,k),b22,k);
            m3=MatrixMultiply(MatrixPlus(a21,a22,k),b11,k);
            m4=MatrixMultiply(a22,MatrixMinus(b21,b11,k),k);
            m5=MatrixMultiply(MatrixPlus(a11,a22,k),MatrixPlus(b11,b22,k),k);
            m6=MatrixMultiply(MatrixMinus(a12,a22,k),MatrixPlus(b21,b22,k),k);
            m7=MatrixMultiply(MatrixMinus(a11,a21,k),MatrixPlus(b11,b12,k),k);
            c11=MatrixPlus(MatrixMinus(MatrixPlus(m5,m4,k),m2,k),m6,k);
            c12=MatrixPlus(m1,m2,k);
            c21=MatrixPlus(m3,m4,k);
            c22=MatrixMinus(MatrixMinus(MatrixPlus(m5,m1,k),m3,k),m7,k);
            
            c=Merge(c11,c12,c21,c22,k); //合并C矩阵
            return c;
        } 
    }
    
    public matrix GetMatrix(matrix X,int n)
    {
        int i,j;
        X = new matrix();
        Random random = new Random();
        for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        X.m[i][j] = (int)(Math.random()*10);
         for(i=1;i<=n;i++)
           {
             for(j=1;j<=n;j++)
                System.out.print(X.m[i][j]+" ");
                     System.out.println();
             }
        return X;      
    }
    
    public matrix UsualMatrixMultiply(matrix A,matrix B,matrix C,int n)
    {
        int i,j,t,k;
        for (i=1;i<=n;i++) 
         for (j=1;j<=n;j++) 
         { 
           for (k=1,t=0;k<=n;k++) 
             t+=A.m[i][k]*B.m[k][j]; 
                C.m[i][j]=t; 
         }
        return C;
      }
    
    public static void main(String[] args)throws IOException
    {
        Strassen instance = new Strassen();
        int i,j,n;
        matrix A,B,C,D;
        A = new matrix();
        B = new matrix();
        C = new matrix();
        D = new matrix();
        Scanner in = new Scanner(System.in);
        System.out.print("输入矩阵的阶数: ");
        n = in.nextInt();
        if(instance.IfIsEven(n)==0)
        {
            System.out.println("矩阵A:");
                A=instance.GetMatrix(A,n);
            System.out.println("矩阵B:");
                B=instance.GetMatrix(B,n);
            if(n==1) 
                C.m[1][1]=A.m[1][1]*B.m[1][1]; //矩阵阶数为1时的特殊处理 
            else 
                C=instance.MatrixMultiply(A,B,n);
            System.out.println("Strassen矩阵C为:");
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                    System.out.print(C.m[i][j] + " ");
                System.out.println();
            }
            D = instance.UsualMatrixMultiply(A,B,D,n);
            System.out.println("普通乘法矩阵D为:");
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                    System.out.print(D.m[i][j] + " ");
                System.out.println();
            }
        }
        else
            System.out.println("输入的阶数不是2的N次方");
    }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -