📄 javatagle.cpp
字号:
思路:
1.算出每个节点的规划值(也就是待比较的最大值),并记录搜索路径
2.取三角形底边所有规划值中的最大值
3.输出路径
主程序
import java.util. * ;
/**
* 用动态规划法求出最优路径
* @author zqc
* */
public class DynamicSolveTrianglePath {
private String[][] str_triangle = null ;
private Node[][] triangle_nodes = null ;
private List nodes;
private List paths;
// 节点
static class Node {
private int value;
private List path = new Vector();
public List getPath() {
return path;
}
public void setPath(List p) {
path = p;
}
// n=(0,0) or (0,1) or (2,2)
public void addPath(String n) {
path.add(n);
}
public void addPath(List pa) {
path.addAll(pa);
}
public int getValue() {
return value;
}
public void setValue( int value) {
this .value = value;
}
}
public DynamicSolveTrianglePath() {
initNodes();
findPath();
}
// 从根节点开始,逆向推解出到达所有节点的最佳路径
private void initNodes(){
this.str_triangle = ReadTriangle.getTriangle();
triangle_nodes = new Node[str_triangle.length][];
nodes = new Vector();
for(int i = 0 ; i < str_triangle.length; i++){
triangle_nodes[i] = new Node[str_triangle[i].length];
for(int j = 0 ; j< str_triangle[i].length;j++){
String currentPath = "("+i+","+j+")";
Node n = new Node();
if(i==0&&j==0){
n.setValue(c(str_triangle[0][0]));
n.addPath(currentPath);
triangle_nodes[i][j] = n;
continue;
}
//左右边界节点
if((j==0||j==str_triangle[i].length-1)){
if(i==1){//第2行的节点
int value = c(str_triangle[0][0])+c(str_triangle[i][j]);
List ph = triangle_nodes[0][0].getPath();
n.addPath(ph);
n.addPath(currentPath);
n.setValue(value);
ph = null;
}else{//0,1行以下的其他边界节点
int value = j==0?c(str_triangle[i][j])+triangle_nodes[i-1][j].getValue():
c(str_triangle[i][j])+triangle_nodes[i-1][j-1].getValue();
List ph = j==0?triangle_nodes[i-1][j].getPath():
triangle_nodes[i-1][j-1].getPath();
n.addPath(ph);
n.addPath(currentPath);
n.setValue(value);
}
}else{//除边界节点外其他节点
Node node1 = triangle_nodes[i-1][j-1];
Node node2 = triangle_nodes[i-1][j];
Node bigger = max(node1,node2);
List ph = bigger.getPath();
n.addPath(ph);
n.addPath(currentPath);
int val = bigger.getValue()+c(str_triangle[i][j]);
n.setValue(val);
}
triangle_nodes[i][j] = n;
n = null;
}//end of for j
}//end of for i
}
private Node max(Node node1,Node node2){
int i1 = node1.getValue();
int i2 = node2.getValue();
return i1>i2?node1:node2;
}
private int c(String s){
return Integer.parseInt(s.trim());
}
//找出最佳路径
private void findPath(){
if(this.triangle_nodes==null)return;
int max = 0;
int mi = 0;
int mj = 0;
for(int i = 0 ; i < triangle_nodes.length; i++){
for(int j = 0 ; j< triangle_nodes[i].length;j++){
int t = triangle_nodes[i][j].getValue();
if(t>max){
max = t;
mi = i;
mj = j;
}
}
}
System.out.println("Max Path:"+triangle_nodes[mi][mj].getPath());
System.out.println("Max Value:"+max);
}
public static void main(String[] args)throws Exception{
DynamicSolveTrianglePath dsp = new
DynamicSolveTrianglePath();
}
}
用于读取文件的辅助类
import java.io. * ;
import java.util. * ;
/**
* 输入文本格式为
* 类似这样一个数字三角形
*
* x
* x x
* x x x
* x x x x
* x x x x x
*
* @author zqc
* */
public class ReadTriangle {
public static String TRIANGLE_FILE ="c:/java/triangle.txt" ;
public static String[][] getTriangle() {
String[][] rtn;
try{
File f =new File(ReadTriangle.TRIANGLE_FILE);
BufferedReader br=new BufferedReader(new FileReader(f));
List l =new Vector();
String line =br.readLine();
while (line != null ) {
l.add(line.trim());
line=br.readLine();
}
int heigth=l.size();
rtn =new String[heigth][];
for ( int i =0 ; i< heigth ; i ++ ) {
String s = (String)l.get(i);
String[] tk =s.split(" ");
int tklen =tk.length;
rtn[i] =new String[tklen];
for ( int k =0 ; k < tklen ; k ++ ) {
rtn[i][k] = tk[k];
}
}
return rtn;
} catch (FileNotFoundException e) {
System.out.println("err1="+e);
} catch (IOException e) {
System.out.println("err2="+e);
}
return null ;
}
public static void main(String args[]){
String[][] trn=ReadTriangle.getTriangle();
System.out.println("toal="+trn.length);
for(int i=0;i< trn.length;i++){
System.out.println("ok="+trn[i].length);
for(int j=0;j< trn[i].length;j++)
System.out.println(trn[i][j]);
}
}
}
结果输出如下:
Max Path:[(0,0), (1,0), (2,0), (3,1), (4,1), (5,2)]
Max Value:39
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -