📄 cabac.c
字号:
*
***************************************************************************/
void readCBPFromBuffer_CABAC(SyntaxElement *se,
struct inp_par *inp,
struct img_par *img,
DecodingEnvironmentPtr dep_dp)
{
TextureInfoContexts *ctx = img->currentSlice->tex_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int mb_x, mb_y;
int a, b;
int curr_cbp_ctx, curr_cbp_idx;
int cbp = 0;
int cbp_bit;
int mask;
if ( se->type == SE_CBP_INTRA )
curr_cbp_idx = 0;
else
curr_cbp_idx = 1;
/* coding of luma part (bit by bit) */
for (mb_y=0; mb_y < 4; mb_y += 2)
{
for (mb_x=0; mb_x < 4; mb_x += 2)
{
if (mb_y == 0)
{
if (currMB->mb_available[0][1] == NULL)
b = 0;
else
b = (( ((currMB->mb_available[0][1])->cbp & (1<<(2+mb_x/2))) == 0) ? 1 : 0);
}
else
b = ( ((cbp & (1<<(mb_x/2))) == 0) ? 1: 0);
if (mb_x == 0)
{
if (currMB->mb_available[1][0] == NULL)
a = 0;
else
a = (( ((currMB->mb_available[1][0])->cbp & (1<<(mb_y+1))) == 0) ? 1 : 0);
}
else
a = ( ((cbp & (1<<mb_y)) == 0) ? 1: 0);
curr_cbp_ctx = a+2*b;
mask = (1<<(mb_y+mb_x/2));
cbp_bit = biari_decode_symbol(dep_dp, ctx->cbp_contexts[curr_cbp_idx][0] + curr_cbp_ctx );
if (cbp_bit) cbp += mask;
}
}
/* coding of chroma part */
b = 0;
if (currMB->mb_available[0][1] != NULL)
b = ((currMB->mb_available[0][1])->cbp > 15) ? 1 : 0;
a = 0;
if (currMB->mb_available[1][0] != NULL)
a = ((currMB->mb_available[1][0])->cbp > 15) ? 1 : 0;
curr_cbp_ctx = a+2*b;
cbp_bit = biari_decode_symbol(dep_dp, ctx->cbp_contexts[curr_cbp_idx][1] + curr_cbp_ctx );
if (cbp_bit) /* set the chroma bits */
{
b = 0;
if (currMB->mb_available[0][1] != NULL)
if ((currMB->mb_available[0][1])->cbp > 15)
b = (( ((currMB->mb_available[0][1])->cbp >> 4) == 2) ? 1 : 0);
a = 0;
if (currMB->mb_available[1][0] != NULL)
if ((currMB->mb_available[1][0])->cbp > 15)
a = (( ((currMB->mb_available[1][0])->cbp >> 4) == 2) ? 1 : 0);
curr_cbp_ctx = a+2*b;
cbp_bit = biari_decode_symbol(dep_dp, ctx->cbp_contexts[curr_cbp_idx][2] + curr_cbp_ctx );
cbp += (cbp_bit == 1) ? 32 : 16;
}
se->value1 = cbp;
#if TRACE
fprintf(p_trace, "@%d %s\t\t\t%d",symbolCount++, se->tracestring, se->value1);
fflush(p_trace);
#endif
}
/****************************************************************************
*
* Function: readRunLevelFromBuffer_CABAC()
*
* Purpose: This function is used to arithmetically decode level and
* run of a given MB.
*
*
***************************************************************************/
void readRunLevelFromBuffer_CABAC( SyntaxElement *se,
struct inp_par *inp,
struct img_par *img,
DecodingEnvironmentPtr dep_dp)
{
int level;
int run=0;
const int curr_ctx_idx = se->context;
int curr_level_ctx;
int sign_of_level;
int max_run;
// static int c=0;
TextureInfoContexts *ctx = img->currentSlice->tex_ctx;
// Macroblock *currMB = &img->mb_data[img->current_mb_nr];
level = unary_level_decode(dep_dp,ctx->level_context[curr_ctx_idx]);
if (level!=0)
{
curr_level_ctx = 3;
sign_of_level = biari_decode_symbol(dep_dp, ctx->level_context[curr_ctx_idx] + curr_level_ctx );
if (sign_of_level) level = (-1)*level;
//if (curr_ctx_idx != 0 && curr_ctx_idx != 3) // not double scan and not DC-chroma
/* GB DC_chroma => ctx == 6 || ctx == 5 */
if (curr_ctx_idx != 0 && curr_ctx_idx != 6 && curr_ctx_idx != 5) // not double scan and not DC-chroma
run = unary_bin_decode(dep_dp,ctx->run_context[curr_ctx_idx],1);
else
{
max_run = (curr_ctx_idx == 0) ? 7 : 3; // if double scan max_run = 7; if DC-chroma max_run = 3;
run = unary_bin_max_decode(dep_dp,ctx->run_context[curr_ctx_idx],1,max_run);
}
}
se->value1 = level;
se->value2 = run;
#if TRACE
fprintf(p_trace, "@%d%s\t\t\t%d ",symbolCount++, se->tracestring, se->value1);
fflush(p_trace);
#endif
}
/************************************************************************
*
* Routine readSyntaxElement_CABAC
*
* Description: arithmetic decoding
*
************************************************************************/
int readSyntaxElement_CABAC(SyntaxElement *se, struct img_par *img, struct inp_par *inp, DataPartition *this_dataPart)
{
int curr_len;
DecodingEnvironmentPtr dep_dp = &(this_dataPart->de_cabac);
curr_len = arideco_bits_read(dep_dp);
/* perform the actual decoding by calling the appropriate method */
se->reading(se, inp, img, dep_dp);
return (se->len = (arideco_bits_read(dep_dp) - curr_len));
}
/************************************************************************
*
* Routine readSliceCABAC
*
* Description: get slice and header
*
************************************************************************/
int readSliceCABAC(struct img_par *img, struct inp_par *inp)
{
Slice *currSlice = img->currentSlice;
Bitstream *currStream = currSlice->partArr[0].bitstream;
unsigned char *code_buffer = currStream->streamBuffer;
int *read_len = &(currStream->read_len);
DecodingEnvironmentPtr dep = &((currSlice->partArr[0]).de_cabac);
int current_header;
int BitstreamLengthInBytes;
int info;
int BitsUsedByHeader = 0, ByteStartPosition;
currStream->frame_bitoffset =0;
memset (code_buffer, 0xff, MAX_CODED_FRAME_SIZE); // this prevents a buffer full with zeros
BitstreamLengthInBytes = currStream->bitstram_length = GetOneSliceIntoSourceBitBuffer(code_buffer);
// Here we are ready to interpret the picture and slice headers. Since
// PictureHeader() and SliceHeader() get their data out of the UVLC's len/info
// array, we need to convert the start of our slice to such a format.
if (BitstreamLengthInBytes < 4)
return EOS;
// Now we have the bits between the current startcode (inclusive) and the
// next start code in code_buffer. Now decode the start codes and the headers
if (31 != GetVLCSymbol (code_buffer, 0, &info, BitstreamLengthInBytes)) {
printf ("readSliceCABAC: Panic, expected start code symbol, found wrong len\n");
exit (-1);
}
currStream->frame_bitoffset +=31;
if (info==0) {
current_header = SOP;
BitsUsedByHeader+=PictureHeader(img, inp);
}
else if (info==1) {
current_header = SOS;
BitsUsedByHeader+=SliceHeader(img, inp);
}
else {
printf ("readSliceCABAC: Panic, expected start code info 0 or 1, found %d\n", info);
exit (-1);
}
ByteStartPosition = currStream->frame_bitoffset/8;
if ((currStream->frame_bitoffset)%8 != 0)
ByteStartPosition++;
arideco_start_decoding(dep, code_buffer, ByteStartPosition, read_len);
currSlice->picture_id = img->tr;
return current_header;
}
/************************************************************************
* Module: unary_bin_max_decode()
*
*
* Purpose: decoding of unary binarization using one or 2 distinct
* models for the first and all remaining bins; no terminating
* "0" for max_symbol
*
*
***********************************************************************
*/
unsigned int unary_bin_max_decode( DecodingEnvironmentPtr dep_dp,
BiContextTypePtr ctx,
int ctx_offset,
unsigned int max_symbol)
{
unsigned int l;
unsigned int symbol;
BiContextTypePtr ictx;
symbol = biari_decode_symbol(dep_dp, ctx );
if (symbol==0)
return 0;
else
{
symbol=0;
ictx=ctx+ctx_offset;
do
{
l=biari_decode_symbol(dep_dp, ictx);
symbol++;
}
while( (l!=0) && (symbol<max_symbol-1) );
if ((l!=0) && (symbol==max_symbol-1))
symbol++;
return symbol;
}
}
/************************************************************************
* Module: unary_level_decode()
*
*
* Purpose: decoding of unary binarization of the absolute value
* of a level using 3 distinct models by separating the first,
* the second and all remaining bins
*
*
***********************************************************************
*/
unsigned int unary_level_decode(DecodingEnvironmentPtr dep_dp,
BiContextTypePtr ctx)
{
unsigned int l;
unsigned int symbol;
int bin=1;
BiContextTypePtr ictx=ctx;
symbol = biari_decode_symbol(dep_dp, ictx );
if (symbol==0)
return 0;
else
{
symbol=0;
ictx++;
do
{
l=biari_decode_symbol(dep_dp, ictx );
if ((++bin)==2) ictx++;
symbol++;
}
while (l!=0);
return symbol;
}
}
/************************************************************************
* Module: unary_bin_decode()
*
*
* Purpose: decoding of unary binarization using one or 2 distinct
* models for the first and all remaining bins
*
*
***********************************************************************
*/
unsigned int unary_bin_decode(DecodingEnvironmentPtr dep_dp,
BiContextTypePtr ctx,
int ctx_offset)
{
unsigned int l;
unsigned int symbol;
BiContextTypePtr ictx;
symbol = biari_decode_symbol(dep_dp, ctx );
if (symbol==0)
return 0;
else
{
symbol=0;
ictx=ctx+ctx_offset;
do
{
l=biari_decode_symbol(dep_dp, ictx);
symbol++;
}
while( l!=0 );
return symbol;
}
}
/************************************************************************
* Module: unary_mv_decode()
*
*
* Purpose: decoding of unary binarization of the absolute value of a
* mv component using 4 distinct models by separating the first,
* the second, intermediate and all remaining bins
*
*
***********************************************************************
*/
unsigned int unary_mv_decode(DecodingEnvironmentPtr dep_dp,
BiContextTypePtr ctx,
unsigned int max_bin)
{
unsigned int l;
unsigned int bin=1;
unsigned int symbol;
BiContextTypePtr ictx=ctx;
symbol = biari_decode_symbol(dep_dp, ictx );
if (symbol==0)
return 0;
else
{
symbol=0;
ictx++;
do
{
l=biari_decode_symbol(dep_dp, ictx );
if ((++bin)==2) ictx++;
if (bin==max_bin) ictx++;
symbol++;
}
while (l!=0);
return symbol;
}
}
/************************************************************************
* Module: cabac_startcode_follows(struct img_par *img)
*
*
* Purpose: finding end of a slice in case this is not the end of a frame
*
*
************************************************************************/
int cabac_startcode_follows(struct img_par *img, struct inp_par *inp)
{
Slice *currSlice = img->currentSlice;
if (img->current_mb_nr == currSlice->last_mb_nr)
return TRUE;
return FALSE;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -